Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartige Halbleiter-Membran-Laser

22.03.2017

Laser verdankten ihre Popularität einst Filmen wie „Star Wars“ oder „James Bond“. Heute werden Laser je nach Leistung, Strahlqualität und Wellenlänge unter anderem zum Schneiden und Schweißen verschiedenster Werkstoffe oder in der Medizintechnik eingesetzt. Wissenschaftlerinnen und Wissenschaftler der Universität Stuttgart ebneten jetzt den Weg für eine neue Generation von Halbleiterlasern, die besonders leistungsfähig ist und neue Anwendungen ermöglicht. Die Realisierung gelang dank eines Diamant-Sandwichs.

Herkömmliche Halbleiterlaser eignen sich besonders gut zum Einbau in komplexe Geräte, da sie sehr kompakt sind. Sie erreichen jedoch nicht die Leistung anderer Lasersysteme, und ihr Strahl ist nicht so gut fokussierbar.


Eine Halbleitermembran zwischen zwei runden Diamantscheibchen.

Foto: Hermann Kahle

Eine wichtige Verbesserung brachte die Erfindung des Festkörper-Scheibenlasers an der Universität Stuttgart und dem Deutschen Zentrum für Luft- und Raumfahrt (DLR) Stuttgart. Diese befruchtete auch den Halbleiterbereich und führte zur Realisierung von Halbleiter-Scheibenlasern. Letztere sind zwar um den Faktor 100 leistungsfähiger als konventionelle Halbleiterlaser. Für viele Anwendungen reicht jedoch auch das manchmal nicht aus.

Diamant als beidseitiger Kühlkörper

An den Instituten für Halbleiteroptik und Funktionelle Grenzflächen (IHFG, Prof. Peter Michler und Dr. Michael Jetter) und für Strahlwerkzeuge (IFSW, Prof. Thomas Graf und Dr. Uwe Brauch) suchte man daher nach einem Weg, um Halbleiter-Scheibenlaser in ihrer Ausgangsleistung weiter zu verbessern, ohne deren Vorteile – unter anderem ein hervorragendes Strahlprofil und die Möglichkeit, die Wellenlänge bei laufendem Betrieb zu verstellen – aufs Spiel zu setzen.

Die Lösung bestand in einer Art Abspeckkur: Da Halbleiter selbst eher schlechte Wärmeleiter darstellen und zu hohe Temperaturen im Allgemeinen allen Lasern schaden, ließen die Wissenschaftler alles weg, was nicht unbedingt für den Laser benötigt wird:

Das Trägersubstrat, auf dem die Halbleiterschichten abgeschieden werden, wurde ganz entfernt, der bei Halbleiter-Scheibenlasern stets integrierte Halbleiterspiegel wurde durch einen weiteren externen Spiegel ersetzt. Übrig blieb die nur wenige 100 Nanometer dicke laseraktive Zone. Diese wurde zwischen zwei Diamantscheibchen gepresst, da sich der transparente Edelstein hervorragend als integrierter Kühlkörper eignet.

Hierfür isolierten die Doktoranden Hermann Kahle (IHFG) und Cherry May Mateo (damals IFSW) mit nasschemischen Verfahren die auf dem Trägersubstrat hergestellte laseraktive Zone. Die Halbleitermembran, insgesamt nur ein Achtzigstel so dick wie ein menschliches Haar, kann überhaupt nur in einer Flüssigkeit aufbewahrt werden.

Dann wurde es spannend, denn es galt, die Membran auf einen der nur vier Millimeter großen und 0,5 mm dicken Diamanten zu platzieren, und zwar an einem Stück, mittig und absolut glatt. „Wir brauchten sehr ruhige Hände, viel Geschick und Geduld, denn wenn die Halbleitermembran erst einmal angeheftet ist, kann man sie nicht mehr entfernen, ohne sie zu zerstören“, erklärt Hermann Kahle.

Nach etlichen Versuchen war das Diamant-Halbleiter-Sandwich fertig und konnte nun in einen Laserresonator eingesetzt und im Optik-Labor charakterisiert werden. Das Justieren dauerte Stunden, dann blitzte es endlich auf:

Der Membranlaser funktionierte und emittierte einen starken Lichtstrahl im roten Spektralbereich. Und dieser zeigte all die Eigenschaften, die die Doktoranden sich erhofft hatten: eine hohe Ausgangsleistung, die Einstellbarkeit der Laserwellenlänge während des Betriebs, ein perfektes Strahlprofil… und das Ganze dank des Diamant-Sandwichs bei einer Betriebstemperatur von 10°C. Früher musste das Bauteil teilweise bis minus 30°C gekühlt werden.

Für das Forscherteam fängt die Detailarbeit jetzt freilich erst an: „Wir werden künftig neue Laser realisieren können, die in der kompakten Halbleiterklasse bisher undenkbar waren“, hofft Kahle. Das dürfte zum Beispiel Mediziner freuen: Mittelfristig könnte ein neuer Laser für die photodynamische Therapie zur Verfügung stehen, dessen Wellenlänge passend zum verwendeten lichtaktiven Medikament eingestellt werden kann. Zudem kann der Lichtbereich von Halbleiterlasern um neue Farben wie Gelb oder Orange erweitert werden.

Mit anderen Halbleitermaterialien lassen sich nun auch blaue Membran-Laser herstellen. Kombiniert mit rot und grün könnten diese in neue Kinoprojektoren einfließen, die das Laserschwert in „Star Wars“ dann noch farbenfroher und schärfer aussehen lassen.

Originalpublikation: Hermann Kahle, Cherry May Mateo, et al: Semiconductor membrane external-cavity surface-emitting laser (MECSEL), Optica 3, 1506-1512 (2016).
https://www.osapublishing.org/optica/fulltext.cfm?uri=optica-3-12-1506&id=35...

Kontakt:
Hermann Kahle und Michael Jetter, Universität Stuttgart, Institut für Halbleiteroptik und Funktionelle Grenzflächen, Tel.: +49 (0)711 685 -60499 oder -65105, hermann.kahle[at]ihfg.uni-stuttgart.de,
michael.jetter[at]ihfg.uni-stuttgart.de

Andrea Mayer-Grenu, Universität Stuttgart, Hochschulkommunikation, Tel.: +49 (0)711 685 82176, andrea.mayer-grenu[at]hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-stuttgart.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Laser erzeugt Magnet – und radiert ihn wieder aus
18.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Neue Technik macht Mikro-3D-Drucker präziser
18.04.2018 | Technische Universität Kaiserslautern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Im Focus: Basler Forschern gelingt die Züchtung von Knorpel aus Stammzellen

Aus Stammzellen aus dem Knochenmark von Erwachsenen lassen sich stabile Gelenkknorpel herstellen. Diese Zellen können so gesteuert werden, dass sie molekulare Prozesse der embryonalen Entwicklung des Knorpelgewebes durchlaufen, wie Forschende des Departements Biomedizin von Universität und Universitätsspital Basel im Fachmagazin PNAS berichten.

Bestimmte mesenchymale Stamm-/Stromazellen aus dem Knochenmark von Erwachsenen gelten als äusserst viel versprechend für die Regeneration von Skelettgewebe....

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

Stralsunder IT-Sicherheitskonferenz im Mai zum 7. Mal an der Hochschule Stralsund

12.04.2018 | Veranstaltungen

Materialien erlebbar machen - MatX 2018 - Internationale Konferenz für Materialinnovationen

12.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Laser erzeugt Magnet – und radiert ihn wieder aus

18.04.2018 | Physik Astronomie

Neue Technik macht Mikro-3D-Drucker präziser

18.04.2018 | Physik Astronomie

Intelligente Bauteile für das Stromnetz der Zukunft

18.04.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics