Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartige Halbleiter-Membran-Laser

22.03.2017

Laser verdankten ihre Popularität einst Filmen wie „Star Wars“ oder „James Bond“. Heute werden Laser je nach Leistung, Strahlqualität und Wellenlänge unter anderem zum Schneiden und Schweißen verschiedenster Werkstoffe oder in der Medizintechnik eingesetzt. Wissenschaftlerinnen und Wissenschaftler der Universität Stuttgart ebneten jetzt den Weg für eine neue Generation von Halbleiterlasern, die besonders leistungsfähig ist und neue Anwendungen ermöglicht. Die Realisierung gelang dank eines Diamant-Sandwichs.

Herkömmliche Halbleiterlaser eignen sich besonders gut zum Einbau in komplexe Geräte, da sie sehr kompakt sind. Sie erreichen jedoch nicht die Leistung anderer Lasersysteme, und ihr Strahl ist nicht so gut fokussierbar.


Eine Halbleitermembran zwischen zwei runden Diamantscheibchen.

Foto: Hermann Kahle

Eine wichtige Verbesserung brachte die Erfindung des Festkörper-Scheibenlasers an der Universität Stuttgart und dem Deutschen Zentrum für Luft- und Raumfahrt (DLR) Stuttgart. Diese befruchtete auch den Halbleiterbereich und führte zur Realisierung von Halbleiter-Scheibenlasern. Letztere sind zwar um den Faktor 100 leistungsfähiger als konventionelle Halbleiterlaser. Für viele Anwendungen reicht jedoch auch das manchmal nicht aus.

Diamant als beidseitiger Kühlkörper

An den Instituten für Halbleiteroptik und Funktionelle Grenzflächen (IHFG, Prof. Peter Michler und Dr. Michael Jetter) und für Strahlwerkzeuge (IFSW, Prof. Thomas Graf und Dr. Uwe Brauch) suchte man daher nach einem Weg, um Halbleiter-Scheibenlaser in ihrer Ausgangsleistung weiter zu verbessern, ohne deren Vorteile – unter anderem ein hervorragendes Strahlprofil und die Möglichkeit, die Wellenlänge bei laufendem Betrieb zu verstellen – aufs Spiel zu setzen.

Die Lösung bestand in einer Art Abspeckkur: Da Halbleiter selbst eher schlechte Wärmeleiter darstellen und zu hohe Temperaturen im Allgemeinen allen Lasern schaden, ließen die Wissenschaftler alles weg, was nicht unbedingt für den Laser benötigt wird:

Das Trägersubstrat, auf dem die Halbleiterschichten abgeschieden werden, wurde ganz entfernt, der bei Halbleiter-Scheibenlasern stets integrierte Halbleiterspiegel wurde durch einen weiteren externen Spiegel ersetzt. Übrig blieb die nur wenige 100 Nanometer dicke laseraktive Zone. Diese wurde zwischen zwei Diamantscheibchen gepresst, da sich der transparente Edelstein hervorragend als integrierter Kühlkörper eignet.

Hierfür isolierten die Doktoranden Hermann Kahle (IHFG) und Cherry May Mateo (damals IFSW) mit nasschemischen Verfahren die auf dem Trägersubstrat hergestellte laseraktive Zone. Die Halbleitermembran, insgesamt nur ein Achtzigstel so dick wie ein menschliches Haar, kann überhaupt nur in einer Flüssigkeit aufbewahrt werden.

Dann wurde es spannend, denn es galt, die Membran auf einen der nur vier Millimeter großen und 0,5 mm dicken Diamanten zu platzieren, und zwar an einem Stück, mittig und absolut glatt. „Wir brauchten sehr ruhige Hände, viel Geschick und Geduld, denn wenn die Halbleitermembran erst einmal angeheftet ist, kann man sie nicht mehr entfernen, ohne sie zu zerstören“, erklärt Hermann Kahle.

Nach etlichen Versuchen war das Diamant-Halbleiter-Sandwich fertig und konnte nun in einen Laserresonator eingesetzt und im Optik-Labor charakterisiert werden. Das Justieren dauerte Stunden, dann blitzte es endlich auf:

Der Membranlaser funktionierte und emittierte einen starken Lichtstrahl im roten Spektralbereich. Und dieser zeigte all die Eigenschaften, die die Doktoranden sich erhofft hatten: eine hohe Ausgangsleistung, die Einstellbarkeit der Laserwellenlänge während des Betriebs, ein perfektes Strahlprofil… und das Ganze dank des Diamant-Sandwichs bei einer Betriebstemperatur von 10°C. Früher musste das Bauteil teilweise bis minus 30°C gekühlt werden.

Für das Forscherteam fängt die Detailarbeit jetzt freilich erst an: „Wir werden künftig neue Laser realisieren können, die in der kompakten Halbleiterklasse bisher undenkbar waren“, hofft Kahle. Das dürfte zum Beispiel Mediziner freuen: Mittelfristig könnte ein neuer Laser für die photodynamische Therapie zur Verfügung stehen, dessen Wellenlänge passend zum verwendeten lichtaktiven Medikament eingestellt werden kann. Zudem kann der Lichtbereich von Halbleiterlasern um neue Farben wie Gelb oder Orange erweitert werden.

Mit anderen Halbleitermaterialien lassen sich nun auch blaue Membran-Laser herstellen. Kombiniert mit rot und grün könnten diese in neue Kinoprojektoren einfließen, die das Laserschwert in „Star Wars“ dann noch farbenfroher und schärfer aussehen lassen.

Originalpublikation: Hermann Kahle, Cherry May Mateo, et al: Semiconductor membrane external-cavity surface-emitting laser (MECSEL), Optica 3, 1506-1512 (2016).
https://www.osapublishing.org/optica/fulltext.cfm?uri=optica-3-12-1506&id=35...

Kontakt:
Hermann Kahle und Michael Jetter, Universität Stuttgart, Institut für Halbleiteroptik und Funktionelle Grenzflächen, Tel.: +49 (0)711 685 -60499 oder -65105, hermann.kahle[at]ihfg.uni-stuttgart.de,
michael.jetter[at]ihfg.uni-stuttgart.de

Andrea Mayer-Grenu, Universität Stuttgart, Hochschulkommunikation, Tel.: +49 (0)711 685 82176, andrea.mayer-grenu[at]hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-stuttgart.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen
19.06.2018 | Johannes Gutenberg-Universität Mainz

nachricht Ein neues Experiment zum Verständnis der Dunklen Materie
14.06.2018 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen

19.06.2018 | Physik Astronomie

Automatisierung und Produktionstechnik – Wandlungsfähig – Präzise – Digital

19.06.2018 | Messenachrichten

Überdosis Calcium

19.06.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics