Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Netzwerk für Neutrinoforschung und Sensoren

08.03.2017

Die präziseste Waage der Welt nimmt Ende dieses Jahres in Karlsruhe ihren Betrieb auf und wird 5 Jahre lang Daten aufnehmen, um die Masse des Neutrinos präzise zu bestimmen. Aber schon jetzt machen sich die Teilchenforscher des KIT und der Universität Heidelberg Gedanken, auf welcher Technologie die nächste Generation von Teilchenwaagen basieren könnte. Die gemeinsamen Forschungsaktivitäten bündeln sie mit nationalen und internationalen Partnern nun im Netzwerk Neutrinomasse und unterzeichneten ein entsprechendes MoU.

Neutrinos spielen eine wichtige Rolle bei der Untersuchung des Ursprungs der Materie und bei der Gestaltung der sichtbaren Strukturen im Kosmos. Ihre Masse, die über eine Milliarde Mal kleiner sein muss als die eines Wasserstoffatoms, ist ein wichtiger, aber noch ungenau bestimmter Parameter.


Präzisere Sensoren und Detektoren für teilchenphysikalische Experimente wie KATRIN sind das Ziel des internationalen Netzwerks Neutrinomasse.

Bild KIT


Protottyp eines Detektors für das ECHo-Experiment.

Bild ECHo/Uni Heidelberg

Um diesen zu messen, entwickeln Forscher in Karlsruhe und Heidelberg zusammen mit ihren nationalen und internationalen Partnern extrem präzise Sensoren und Detektoren für teilchenphysikalische Experimente wie KATRIN und ECHo.

„Wir stellen nun die Weichen, damit Deutschland noch lange ein Mekka der Neutrinoforschung bleibt“, freut sich Guido Drexlin vom KIT, einer der beiden Sprecher von KATRIN – dem KArlsruhe TRItium Neutrino Experiment. „Die Technologien, die von KATRIN und ECHo entwickelt werden, werden von Relevanz sein für das ganze Forschungsfeld der Teilchenphysik.“

„Durch die Zusammenarbeit der Experimente aus Karlsruhe und Heidelberg erhöhen wir die Schlagkraft und internationale Sichtbarkeit“, unterstreicht Christian Enss von der Universität Heidelberg und Sprecher der DFG-Forschergruppe ECHo — dem Electron Capture Holmium Experiment. „Die Sensoren, an denen wir arbeiten, sind für Grundlagenforschung und Anwendung gleichermaßen interessant, etwa in der Materialanalyse oder Massenspektroskopie schwerer Biomoleküle.“

Um die bestehenden Kontakte zu bündeln und zu intensivieren haben die Kooperationen nun die Leitlinien der zukünftigen Zusammenarbeit mit einem Memorandum of Understanding (MoU) festgelegt. Im nun gegründeten internationalen Netzwerk Neutrinomasse werden sich rund 230 Wissenschaftler aus Deutschland, Frankreich, Indien, Russland, der Schweiz, der Slowakei, Spanien, Tschechien, und den USA einbringen. Zentrales Ziel ist es, neue Technologien auf den Gebieten der Sensorentwicklung und Probenaufbereitung zu entwickeln und in gemeinsamen Experimenten zu testen.

Auch Workshops und Nachwuchsförderung soll gemeinsam abgestimmt werden. Die Leitung des internationalen Netzwerks Neutrinomasse (Absolute neutrino mass scale from nuclear ß-decay and electron capture) werden gemeinschaftlich Katrin Valerius, Leiterin der Helmholtz-Hochschul-Nachwuchsgruppe bei KATRIN, und Loredana Gastaldo, Sprecherin von ECHo, übernehmen. (Hinweis: Das Bild von der Unterzeichnung stellen wir nach der Veranstaltung online unter http://www.kit.edu/kit/pi_2017.php zur Verfügung.)

Das Experiment ECHo in Heidelberg möchte im nächsten Jahrzehnt die Neutrinomasse aus dem Elektroneneinfangprozess am Isotop Holmium-163 bestimmen. Dazu arbeitet die ECHo-Kollaboration an der Herstellung von ultrareinem Holmium und entwickelt derzeit metallische magnetische Kalorimeter, die sich bei sehr niedrigen Temperaturen durch hohe Energieauflösung und schnelle Ansprechzeit auszeichnen. Sie lassen sich gut auf verschiedenste Teilchensorten und Energiebereiche optimieren und werden über Helium-Verdünnungskryostate auf wenige Millikelvin gekühlt. Es verfolgt damit einen komplementären Ansatz zum aktuellen Experiment KATRIN am KIT.

Zahlreiche Technologien und Komponenten spielen bei KATRIN zusammen. Auf dem 70 Meter langen Weg eines Elektrons durch das gesamte Experiment liegen supraleitenden Magnete und Kältefallen, gasgefüllte Bereiche und Vakuum, Zonen mit Temperaturen unter 4 Kelvin und mit Raumtemperatur, deren Betrieb optimal aufeinander abgestimmt werden muss, damit nach einer Flugzeit von wenigen Millionstel Sekunden Elektronen auf den Detektor treffen. Der Detektor aus Silizium-Halbleitermaterial besitzt einen Durchmesser von rund 125 Millimetern und beinhaltet 148 Pixel, die ähnlich einer Dartscheibe angeordnet sind und damit einen räumlichen „Blick“ in die Welt von KATRIN ermöglichen.

Das internationale Experiment KATRIN wird die Neutrinomasse mit einer Genauigkeit eingrenzen, die mehr als eine ganze Größenordnung besser sein wird als bislang. Dazu werden ab dem Jahreswechsel 2017/18 Elektronen aus dem Beta-Zerfall von Tritium, in dem Neutrinos eine tragende Rolle spielen, in einem 24 Meter langen Spektrometer exakt vermessen. Erste interessante Ergebnisse zur Neutrinomasse werden bereits für Mitte 2018 erwartet.

Dann wird die Mess-Empfindlichkeit von KATRIN bereits deutlich besser sein als die von allen anderen Tritiumzerfallsexperimenten der letzten 3 Dekaden zusammen. Die endgültige, geplante Sensitivität erreicht KATRIN aber erst nach 5 Kalenderjahren Messzeit. Die Technologien für die Zeit danach werden nun im internationalen Netzwerk Neutrinonmasse zwischen den nordbadischen Standorten Karlsruhe und Heidelberg sowie ihren nationalen und internationalen Partnern entwickelt. Die nationalen Partner des Netzwerkes sind die Max-Planck-Institute für Kernphysik, Heidelberg und für Physik, München, die Universitäten Berlin (HU), Bonn, Dresden, Mainz, Münster, Türbingen, Wuppertal und die Fachhochschule Fulda.

Mehr Informationen zu KATRIN:

https://www.katrin.kit.edu/

Mehr Informationen zu ECHo:

https://www.kip.uni-heidelberg.de/echo/

Weiterer Kontakt:

Kosta Schinarakis Themenscout Tel.: +49 721 608 41956 Fax: +49 721 608 43658 E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Weitere Informationen:

http://www.kit.edu/kit/pi_2017.php
https://www.katrin.kit.edu/
https://www.kip.uni-heidelberg.de/echo/

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher verwandeln Diamant in Graphit
24.11.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen
24.11.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metamaterial mit Dreheffekt

Mit 3D-Druckern für den Mikrobereich ist es Forschern des Karlsruher Instituts für Technologie (KIT) gelungen ein Metamaterial aus würfelförmigen Bausteinen zu schaffen, das auf Druckkräfte mit einer Rotation antwortet. Üblicherweise gelingt dies nur mit Hilfe einer Übersetzung wie zum Beispiel einer Kurbelwelle. Das ausgeklügelte Design aus Streben und Ringstrukturen, sowie die zu Grunde liegende Mathematik stellen die Wissenschaftler in der aktuellen Ausgabe der renommierten Fachzeitschrift Science vor.

„Übt man Kraft von oben auf einen Materialblock aus, dann deformiert sich dieser in unterschiedlicher Weise. Er kann sich ausbuchten, zusammenstauchen oder...

Im Focus: Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

Hochpräzise Messung des g-Faktors elf Mal genauer als bisher – Ergebnisse zeigen große Übereinstimmung zwischen Protonen und Antiprotonen

Das magnetische Moment eines einzelnen Protons ist unvorstellbar klein, aber es kann dennoch gemessen werden. Vor über zehn Jahren wurde für diese Messung der...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsschwerpunkt „Smarte Systeme für Mensch und Maschine“ gegründet

24.11.2017 | Veranstaltungen

Schonender Hüftgelenkersatz bei jungen Patienten - Schlüssellochchirurgie und weniger Abrieb

24.11.2017 | Veranstaltungen

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Metamaterial mit Dreheffekt

24.11.2017 | Materialwissenschaften

Forschungsschwerpunkt „Smarte Systeme für Mensch und Maschine“ gegründet

24.11.2017 | Veranstaltungsnachrichten

Schonender Hüftgelenkersatz bei jungen Patienten - Schlüssellochchirurgie und weniger Abrieb

24.11.2017 | Veranstaltungsnachrichten