Negative Quantenkleckse im Eierkarton

Halbleiter, der einen Resonator für Polaritonen bildet. PDI

Dabei verhielten sich die Quantenteilchen überraschenderweise so, als hätten sie eine negative Masse. Das Verfahren könnte hilfreich für den Bau von optischen Computern sein, aber auch neuartige Konzepte in der Kommunikationstechnik ermöglichen.

Dr. Edgar Cerda und sein Team am Paul-Drude-Institut für Festkörperelektronik in Berlin erzeugten in Zusammenarbeit mit Forschern der Universität Sheffield eine Gitterstruktur durch zwei im rechten Winkel eingestrahlte Schallwellen. Dies gelang mit einer besonders ausgefeilten Art von Halbleiterkristall:

Das Team im PDI dampfte auf eine Galliumarsenid-Unterlage rund 80 Schichten des Halbleitermaterials auf, die jeweils genau definiert zwischen zehn und 200 Nanometer dick sind und unterschiedliche Anteile an Aluminium enthalten. Das Aluminium verändert den Brechungsindex der Schichten.

Durch das Einstrahlen von Lichtteilchen (Photonen) entsteht ein besonderer Quantenzustand. Die Photonen verkoppeln sich mit speziellen Elektronenzuständen im Halbleiter, sogenannten Exzitonen. Die daraus entstehenden Licht-Materie-Quasiteilchen nennen die Physiker Polaritonen.

Dabei werden ständig Photonen aufgenommen und wieder abgegeben. Sobald genügend Polaritonen in den Halbleiterschichten, dem optischen Resonator, erzeugt worden sind, verhalten sie sich nicht mehr wie individuelle Teilchen, sondern verschmelzen zu einem Riesenpolariton. Vorausgesagt hatten ähnliche makroskopische Quantenzustände nicht mehr unterscheidbarer Teilchen Albert Einstein und der indische Physiker Satyendranath Bose bereits 1924. Im Labor nachgewiesen werden konnte ein solches Bose-Einstein-Kondensat allerdings erst 1995.

Versetzt man nun die Oberfläche des Halbleiters in akustische Schwingungen, treten die Polaritonen mit diesen in Wechselwirkung. Erstmals konnten Cerda und sein Team dabei beobachten, dass Polaritonen, die sich in eine bestimmte Richtung des Gitters bewegen, so verhalten, als hätten sie eine negative Masse. Durch diesen negativen Masse-Effekt, können diese speziellen Polaritonen leichter zusammenbleiben und ein ganz besonderes Riesenpolariton formen. Negative Massezustände konnten bereits vorher in reinen Photoniksystemen beobachtet werden, erstmals aber wurde es jetzt mit Polaritonen demonstriert.

„Diese Technik der Schallwellen an der Oberfläche ist sehr flexibel“, erläutert Cerda. „Wir können die Kreuzgitter in verschiedenen Abmessungen und Tiefen erzeugen, um die optimalen Konditionen für das Superpolariton mit negativer Masse zu erreichen.“ Damit stehe den Forschern eine ausgesprochen flexible Plattform zur Verfügung, mit der faszinierende physikalische Phänomene untersucht werden könnten. So gebe es bereits theoretische Ansätze und Überlegungen zur Erzeugung anderer exotischer Zustände. „Sie können vielleicht genutzt werden, um Informationen unkonventionell zu verarbeiten.“ Ein weiterer Ansatzpunkt wäre für Cerda ein Mikrochip, auf dem sich Quantenpunkte einzeln in der gekreuzten Gitterstruktur einfangen lassen.

Momentan arbeiten die Physiker gezwungenermaßen noch bei extrem tiefen Temperaturen von rund sechs Grad Kelvin. „Galliumarsenid ist bereits in vielen Anwendungen üblich und deshalb in der notwendigen Reinheit erhältlich“, sagt Cerda. Der Physiker hofft aber, dass seine Arbeitsgruppe später mit ähnlichen Kristallen aus Galliumnitrat den gleichen Effekt auch bei Raumtemperatur erzielen kann.

Phys. Rev. Lett. 111, 146401 (2013)
DOI: 10.1103/PhysRevLett.111.146401

Kontakt: Paul-Drude-Institut für Festkörperelektronik (PDI)
Hausvogteiplatz 5-7, 10117 Berlin
Dr. Edgar Cerda
Tel.: 030-20377 504

Abb. 1: Das Bild links zeigt den aus vielen Schichten bestehenden Halbleiter, der einen Resonator für Polaritonen bildet. Durch akustische Wellen (AW1 überlagert mit AW2) wird eine Gitterstruktur auf der Oberfläche erzeugt. Die Formierung der Superpolaritonen mit negativer Masse zeigt sich in den roten Bereichen des rechten Diagramms. Grafik: PDI

Das Paul-Drude-Institut für Festkörperelektronik (PDI) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In ihnen arbeiten mehr als 1.500 Mitarbeiter. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.

http://www.pdi-berlin.de – Paul-Drude-Institut
http://www.fv-berlin.de – Forschungsverbund Berlin e. V.

Media Contact

Karl-Heinz Karisch Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer