Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Negative Masse und hohe Geschwindigkeit: Wie Elektronen eigene Wege gehen

12.04.2010
Physiker des Max-Born-Instituts (MBI) in Berlin berichten in der neuesten Ausgabe von Physical Review Letters, dass Elektronen in Halbleiterkristallen bei starker Beschleunigung durch ein elektrisches Feld eine negative träge Masse annehmen.

Isaac Newton [1] fand im 17. Jahrhundert heraus, dass eine Kraft die Beschleunigung eines Körpers bewirkt. Die träge Masse des Körpers entspricht dem Verhältnis von Kraft zu Beschleunigung, d.h. bei gleicher Kraft erfährt ein leichter Körper eine größere Beschleunigung als ein schwerer.

Die Masse des Körpers ist positiv, d.h. die Beschleunigung erfolgt in der Richtung der Kraft. Geladene Elementarteilchen wie das freie Elektron, dessen Masse nur 10 hoch -30 = 0,...(29 Nullen !)...1 Kilogramm beträgt, lassen sich in elektrischen Feldern auf extrem hohe Geschwindigkeiten beschleunigen.

Auch die Bewegung von Elektronen in Kristallen folgt dieser Gesetzmäßigkeit, sofern die elektrischen Felder klein sind. In diesem Regime besitzt das Kristallelektron eine Masse, die nur einen Bruchteil der Masse des freien Elektrons beträgt.

Berliner Forscher haben jetzt gezeigt, dass Kristallelektronen in extrem hohen elektrischen Feldern ein völlig anderes Verhalten zeigen und ihre Masse sogar negative Werte annimmt. Wie sie in der neuesten Ausgabe von Physical Review Letters berichten, wurde das Elektron zunächst in einer extrem kurzen Beschleunigungphase von nur 100 Femtosekunden = 0,000 000 000 000 1 Sekunden auf eine Geschwindigkeit von 4 Millionen Stundenkilometern gebracht. Danach bremst das Elektron in einem ähnlichen Zeitraum ab und kehrt dann seine Bewegungsrichtung sogar um. Diese der Kraft entgegengerichtete Beschleunigung lässt sich nur durch eine negative träge Masse des Teilchens erklären.

In den Experimenten werden Elektronen in dem Halbleiterkristall Galliumarsenid durch einen extrem kurzen elektrischen Impuls beschleunigt, dessen Feldstärke 30 Millionen Volt pro Meter beträgt. Gleichzeitig wird mit hoher Präzision die Geschwindigkeit der Elektronen als Funktion der Zeit gemessen. Der Zeitraum des elektrischen Impulses beträgt nur 300 Femtosekunden. Diese extrem kurze Dauer ist erforderlich, da sonst der Kristall zerstört werden kann.

Dieses neue Ergebnis stimmt mit Berechnungen überein, die der Nobelpreisträger Felix Bloch vor mehr als 80 Jahren durchführte. Es eröffnet einen bisher nicht zugänglichen Bereich des Ladungstransports, der neue Perspektiven für zukünftige Bauelemente der Mikroelektronik aufzeigt. Die hier beobachteten Bewegungsfrequenzen liegen im Terahertzbereich (1 THz = 1000 GHz = 10 hoch 12 Hz) und damit etwa 1000 mal höher als die Taktrate der neuesten PC Generation.

[1] Isaac Newton: Axiomata, sive leges motus, Philosophiae Naturalis Principia Mathematica (1687). Siehe auch http://de.wikipedia.org/wiki/Newtonsche_Gesetze

Veröffentlichung: W. Kuehn et al., Phys. Rev. Lett. 104, 146602 (2010)

Ansprechpartner:
Dr. Michael Wörner (Tel. 030-6392-1470, email: woerner@mbi-berlin.de)
Prof. Klaus Reimann (Tel. 030-6392-1476, email: reimann@mbi-berlin.de)
Prof. Thomas Elsaesser (Tel. 030-6392-1400, email: elsasser@mbi-berlin.de)

Christine Vollgraf | idw
Weitere Informationen:
http://de.wikipedia.org/wiki/Newtonsche_Gesetze
http://www.fv-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ein Hauch von Galaxien im Zentrum eines gigantischen Galaxienhaufens
21.08.2017 | Universität Heidelberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik