Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Naturkonstanten: immer noch konstant

18.11.2014

Atomuhren zeigen die Stabilität des Massenverhältnisses von Proton und Elektron

Sind Naturkonstanten wirklich konstant? Neue Untersuchungen in der Physikalisch-Technischen Bundesanstalt (PTB) zeigen: Eine wichtige Naturkonstante, nämlich das Massenverhältnis von Proton zu Elektron, kann sich selbst über das Alter unseres Sonnensystems von etwa 5 Milliarden Jahren hochgerechnet nur maximal um einen millionstel Teil verändert haben.


Uhrenvergleiche zwischen Atomuhren mit Caesium und Ytterbium bestätigen die Konstanz einer Naturkonstanten: des Massenverhältnisses von Proton und Elektron. (Foto: PTB)

Bisher galt die allenfalls noch mögliche Änderung als doppelt so hoch. PTB-Physiker verglichen dazu über 7 Jahre hinweg Caesium- und Ytterbium-Atomuhren miteinander. Ihre Ergebnisse sind zusammen mit denen eines ähnlichen Experiments des britischen Metrologieinstituts NPL (National Physical Laboratory) in der aktuellen Ausgabe der Zeitschrift Physical Review Letters veröffentlicht.

Das Universum expandiert! Nach dieser Erkenntnis in den 1930er Jahren begannen Physiker darüber zu spekulieren, ob in einer solch dynamischen Welt überhaupt konstante Größen bestehen können. Womöglich unterliegen auch die sogenannten Naturkonstanten zeitlichen Änderungen, aus denen man Informationen über die Struktur und die Entwicklung des Universums erhalten könnte?

Seitdem hat man über Beobachtungen der Astro- und Geophysik nach Hinweisen auf Veränderungen von Naturkonstanten über kosmologische Zeiträume von Milliarden von Jahren gesucht. Das Ergebnis waren teilweise widersprüchliche Schlussfolgerungen. In den letzten Jahren haben Laborexperimente mit Atomuhren eine Genauigkeit erreicht, die bereits mit Messungen über einen Zeitraum von wenigen Jahren einen Beitrag zu dieser Frage leisten können.

Zwei Atomuhren, die auf unterschiedlichen Elementen beruhen, würden bei einer Änderung bestimmter Naturkonstanten im Laufe der Zeit auf eine vorhersagbare Weise voneinander abweichen. Mit dieser Methode wurde an der PTB durch Vergleiche zwischen einer optischen Uhr mit einem gespeicherten Ytterbium-Ion und Caesium-Atomuhren die Konstanz einer wichtigen Größe überprüft: des Massenverhältnisses von Proton und Elektron.

Ein Proton ist etwa 1836-mal schwerer als ein Elektron und unterliegt zusätzlich zur elektromagnetischen Kraft auch der sogenannten starken Kraft, die für die Struktur und den Zusammenhalt der Atomkerne verantwortlich ist. Bei veränderlichen Naturkonstanten denkt man insbesondere an Änderungen in der relativen Stärke dieser Kräfte, und dies hätte wiederum einen Einfluss auf die Massen der beteiligten Teilchen.

Die Masse des Elektrons bestimmt die Frequenz der optischen Atomuhren, die Protonenmasse erscheint in der Frequenz der Caesium-Uhr (über die Eigenschaften des Atomkerns). Bei der Entwicklung der Atomuhren wurden die Caesium-Uhr und die Ytterbium-Uhr an der PTB in den letzten Jahren immer wieder – und mit zunehmender Genauigkeit – verglichen.

Zurzeit gehören sie zu den genauesten Atomuhren im Mikrowellen- bzw. im optischen Frequenzbereich. Aus diesen Daten konnte jetzt abgeleitet werden, dass das Massenverhältnis von Proton und Elektron keine nachweisbare Veränderung zeigt, bis auf eine relative Unsicherheit von nur wenigen 10–16 pro Jahr. Damit wäre selbst über das Alter unseres Sonnensystems von etwa 5 Milliarden Jahren extrapoliert nur eine Änderung dieser Naturkonstante um einen millionstel Teil möglich, und sie kann weiterhin als universelle und stabile Größe betrachtet werden.
(es/ptb)

Ansprechpartner:
Dr. Ekkehard Peik, PTB-Fachbereich 4.4 Zeit und Frequenz, Telefon (0531) 592-4400,
E-Mail: ekkehard.peik@ptb.de

Die Originalveröffentlichung:
N. Huntemann, B. Lipphardt, Chr. Tamm, V. Gerginov, S. Weyers, and E. Peik: Improved Limit on a Temporal Variation of mp/me from Comparisons of Yb+ and Cs Atomic Clocks, Phys. Rev. Lett. 113, 210802 (2014). http://dx.doi.org/10.1103/PhysRevLett.113.210802

Dazu existiert ein APS-Viewpoint (spotlighting exceptional research): http://physics.aps.org/articles/v7/117


Weitere Informationen:

http://www.ptb.de/de/aktuelles/archiv/presseinfos/pi2014/pitext/pi141118.html

Erika Schow | PTB

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

nachricht Sternenstaub reist häufiger in Meteoriten mit als gedacht
15.08.2017 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie