Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nature: Schrödingers Erbe und sein Fluch

20.12.2012
Bisher konnte man die Eigenschaften von Festkörpern nicht exakt berechnen, sondern war auf Näherungsverfahren angewiesen.

Die Physiker Georg Kresse und Andreas Grüneis von der Universität Wien entwickelten eine besonders effiziente Methode, um einen entscheidenden Schritt zur exakten Lösung der Schrödingergleichung zu machen. Damit werden hochgenaue Materialsimulationen am Computer möglich, die langfristig das Experiment ersetzen könnten. Die Ergebnisse stellen die Forscher in der aktuellen Ausgabe des renommierten Fachjournals "Nature" vor.

Die physikalischen Gesetze könnte man mit dem Schachspiel vergleichen: die Regeln sind einfach, das Spiel jedoch ist sehr komplex. Will man mögliche Züge im Computer vorausberechnen, so steigt der Rechenaufwand mit jedem Spielzug um einen bestimmten Faktor an. Beim Versuch, alle möglichen Züge zu berechnen, stößt man rasch an Grenzen. Überlegt man sich aber eine geeignete Strategie (z. B. wenn man davon ausgeht, dass niemand Züge plant, die ihm selbst schaden), können viel mehr Züge vorausschauend berechnet werden.

Quantenmechanische Berechnungen haben ähnliche Probleme: Die Gleichungen sind einfach und lange bekannt, ihre Lösung jedoch extrem schwierig. Dies gilt auch für die Schrödingergleichung, den zentralen Kern der modernen Physik. Rund 90 Jahre nach ihrer Entdeckung durch den Österreicher Erwin Schrödinger stellt sie selbst für modernste Hochleistungsrechner ein unlösbares Problem dar, wenn es um Systeme mit mehr als 10 bis 20 Elektronen geht.

"Der Rechenaufwand wächst rasant mit der Anzahl der zu betrachtenden Teilchen. Selbst wenn die Rechenleistung der Supercomputer von einer zur nächsten Generation um einen Faktor 100 wächst, so kann man mit jeder neuen Generation gerade ein Teilchen mehr beschreiben", erklärt Georg Kresse, Professor für Computergestützte Materialphysik an der Universität Wien.

Dieser "Fluch" Schrödingers könnte bald, wenn auch nicht aufgehoben, so doch abgeschwächt werden. Die Wiener Forschergruppe um Georg Kresse, Sprecher des vom FWF finanzierten Spezialforschungsbereiches "Vienna Computational Materials Laboratory" (ViCoM), und Wissenschafter aus Cambridge rund um Ali Alavi haben in den letzten Jahren ein Verfahren entwickelt, um die Schrödingergleichung für Festkörper exakt zu lösen; und das obwohl Festkörper in der Regel eine schier unvorstellbare Anzahl von Atomen und Elektronen enthalten.

Bei der in Cambridge entwickelten Methode steigt der Rechenaufwand immer noch exponentiell mit der Anzahl der betrachteten Teilchen – allerdings wesentlich langsamer. Für jedes weitere Teilchen ist nun statt dem hundertfachen nur mehr ein zwei- bis dreifacher Aufwand notwendig. Aber auch damit ist die Größe der betrachteten Systeme auf kleine Moleküle und einfache Festkörper beschränkt.

Andreas Grüneis, der im Moment von der Österreichischen Akademie der Wissenschaften unterstützt wird, adaptierte nun quantenchemische Verfahren zum ersten Mal für komplexe Systeme wie Festkörper. Der Rechenaufwand für dieses neue Verfahren wächst nicht exponentiell, sondern nur polynomisch mit der Teilchenzahl.

Bisher wurde zur Berechnung der Eigenschaften von Festkörpern fast ausschließlich die sogenannte Dichtefunktionaltheorie eingesetzt, eine Methode des in Österreich geborenen Nobelpreisträgers Walter Kohn, der am 4. Dezember zum Ehrendoktor der Universität Wien ernannt wurde. Diese ist jedoch nicht ausreichend genau. "Die neuen Verfahren können als Benchmark verwendet werden, um die Dichtefunktionaltheorie weiter zu verbessern. Langfristig könnten sie sogar die Dichtefunktionaltheorie zum Teil ablösen. Damit ist ein entscheidender Schritt von unkontrollierbaren Näherungsverfahren zur exakten Lösung der Schrödingergleichung gelungen", freut sich Andreas Grüneis. Hochgenaue Materialsimulationen am Computer, die das Experiment gänzlich ersetzen, sind in Reichweite. Diese "Wiener Methode" könnte in den nächsten Jahren zu einer Revolution in der Physik führen.

Publikation in "Nature":
Towards an Exact Description of Electronic Wavefunctions in Real Solids: George H. Booth, Andreas Grüneis, Georg Kresse, Ali Alavi. Nature 2012

DOI: 10.1038/nature11770

Wissenschaftlicher Kontakt
Univ.-Prof. Dipl.-Ing. Dr. Georg Kresse
Dr. Andreas Grüneis
Computergestützte Materialphysik
Fakultät für Physik der Universität Wien
1090 Wien, Sensengasse 8
T +43-1-4277-514 11
M +43-664-602 77-514 11
georg.kresse@univie.ac.at
andreas.grüneis@univie.ac.at
Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Veronika Schallhart | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultra-sensitiv dank quantenmechanischer Verschränkung
28.06.2017 | Universität Stuttgart

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive