Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nature: Schrödingers Erbe und sein Fluch

20.12.2012
Bisher konnte man die Eigenschaften von Festkörpern nicht exakt berechnen, sondern war auf Näherungsverfahren angewiesen.

Die Physiker Georg Kresse und Andreas Grüneis von der Universität Wien entwickelten eine besonders effiziente Methode, um einen entscheidenden Schritt zur exakten Lösung der Schrödingergleichung zu machen. Damit werden hochgenaue Materialsimulationen am Computer möglich, die langfristig das Experiment ersetzen könnten. Die Ergebnisse stellen die Forscher in der aktuellen Ausgabe des renommierten Fachjournals "Nature" vor.

Die physikalischen Gesetze könnte man mit dem Schachspiel vergleichen: die Regeln sind einfach, das Spiel jedoch ist sehr komplex. Will man mögliche Züge im Computer vorausberechnen, so steigt der Rechenaufwand mit jedem Spielzug um einen bestimmten Faktor an. Beim Versuch, alle möglichen Züge zu berechnen, stößt man rasch an Grenzen. Überlegt man sich aber eine geeignete Strategie (z. B. wenn man davon ausgeht, dass niemand Züge plant, die ihm selbst schaden), können viel mehr Züge vorausschauend berechnet werden.

Quantenmechanische Berechnungen haben ähnliche Probleme: Die Gleichungen sind einfach und lange bekannt, ihre Lösung jedoch extrem schwierig. Dies gilt auch für die Schrödingergleichung, den zentralen Kern der modernen Physik. Rund 90 Jahre nach ihrer Entdeckung durch den Österreicher Erwin Schrödinger stellt sie selbst für modernste Hochleistungsrechner ein unlösbares Problem dar, wenn es um Systeme mit mehr als 10 bis 20 Elektronen geht.

"Der Rechenaufwand wächst rasant mit der Anzahl der zu betrachtenden Teilchen. Selbst wenn die Rechenleistung der Supercomputer von einer zur nächsten Generation um einen Faktor 100 wächst, so kann man mit jeder neuen Generation gerade ein Teilchen mehr beschreiben", erklärt Georg Kresse, Professor für Computergestützte Materialphysik an der Universität Wien.

Dieser "Fluch" Schrödingers könnte bald, wenn auch nicht aufgehoben, so doch abgeschwächt werden. Die Wiener Forschergruppe um Georg Kresse, Sprecher des vom FWF finanzierten Spezialforschungsbereiches "Vienna Computational Materials Laboratory" (ViCoM), und Wissenschafter aus Cambridge rund um Ali Alavi haben in den letzten Jahren ein Verfahren entwickelt, um die Schrödingergleichung für Festkörper exakt zu lösen; und das obwohl Festkörper in der Regel eine schier unvorstellbare Anzahl von Atomen und Elektronen enthalten.

Bei der in Cambridge entwickelten Methode steigt der Rechenaufwand immer noch exponentiell mit der Anzahl der betrachteten Teilchen – allerdings wesentlich langsamer. Für jedes weitere Teilchen ist nun statt dem hundertfachen nur mehr ein zwei- bis dreifacher Aufwand notwendig. Aber auch damit ist die Größe der betrachteten Systeme auf kleine Moleküle und einfache Festkörper beschränkt.

Andreas Grüneis, der im Moment von der Österreichischen Akademie der Wissenschaften unterstützt wird, adaptierte nun quantenchemische Verfahren zum ersten Mal für komplexe Systeme wie Festkörper. Der Rechenaufwand für dieses neue Verfahren wächst nicht exponentiell, sondern nur polynomisch mit der Teilchenzahl.

Bisher wurde zur Berechnung der Eigenschaften von Festkörpern fast ausschließlich die sogenannte Dichtefunktionaltheorie eingesetzt, eine Methode des in Österreich geborenen Nobelpreisträgers Walter Kohn, der am 4. Dezember zum Ehrendoktor der Universität Wien ernannt wurde. Diese ist jedoch nicht ausreichend genau. "Die neuen Verfahren können als Benchmark verwendet werden, um die Dichtefunktionaltheorie weiter zu verbessern. Langfristig könnten sie sogar die Dichtefunktionaltheorie zum Teil ablösen. Damit ist ein entscheidender Schritt von unkontrollierbaren Näherungsverfahren zur exakten Lösung der Schrödingergleichung gelungen", freut sich Andreas Grüneis. Hochgenaue Materialsimulationen am Computer, die das Experiment gänzlich ersetzen, sind in Reichweite. Diese "Wiener Methode" könnte in den nächsten Jahren zu einer Revolution in der Physik führen.

Publikation in "Nature":
Towards an Exact Description of Electronic Wavefunctions in Real Solids: George H. Booth, Andreas Grüneis, Georg Kresse, Ali Alavi. Nature 2012

DOI: 10.1038/nature11770

Wissenschaftlicher Kontakt
Univ.-Prof. Dipl.-Ing. Dr. Georg Kresse
Dr. Andreas Grüneis
Computergestützte Materialphysik
Fakultät für Physik der Universität Wien
1090 Wien, Sensengasse 8
T +43-1-4277-514 11
M +43-664-602 77-514 11
georg.kresse@univie.ac.at
andreas.grüneis@univie.ac.at
Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Veronika Schallhart | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
13.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungsnachrichten

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungsnachrichten

Neue Wirkstoffe aus dem Baukasten: Design und biotechnologische Produktion neuer Peptid-Wirkstoffe

13.12.2017 | Biowissenschaften Chemie