Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nature Physics: „Lang ersehnte Begründung“ für mysteriöse Effekte in Hochtemperatursupraleitern

04.06.2013
Ein deutsch-französisches Forscherteam hat ein neues Modell aufgestellt, das erklärt, wie sich in Hochtemperatursupraleitern der sogenannte „Pseudogap“-Zustand bildet.

Die Berechnungen sagen zwei gleichzeitig existierende Elektronenordnungen voraus. Supraleiter verlieren ab einer bestimmten Temperatur ihren elektrischen Widerstand und können Strom verlustfrei leiten.


An jedem Kupferatom (graue Kugeln) liegt ein Quadrupolmoment vor; in der Summe bilden diese eine Art Schachbrettmuster, wobei sich die einzelnen Quadrate des Schachbretts in der Ausrichtung der positiv und negativ geladenen Bereiche unterscheiden (grün: positive Bereiche links und rechts; grau: positive Bereiche oben und unten). An den Grenzen zwischen grünen und grauen Flächen findet ein Vorzeichenwechsel statt. Grenznahe Kupferatome weisen ein kleineres Quadrupolmoment auf als Kupferatome in der Mitte der Flächen. Konstantin Efetov und Hendrik Meier (Institut für Theoretische Physik III)

Die neue „Pseudogap“-Theorie könnte auch die lang ersehnte Begründung liefern, warum bestimmte keramische Kupferoxidverbindungen im Gegensatz zu herkömmlichen metallischen Supraleitern bei so ungewöhnlich hohen Temperaturen ihren elektrischen Widerstand verlieren.

Zwei Ordnungssysteme für Elektronen
„Lang ersehnte Begründung“ für mysteriöse Effekte in Hochtemperatursupraleitern
Bochumer und Pariser Physiker berichten in „Nature Physics“

Ein deutsch-französisches Forscherteam hat ein neues Modell aufgestellt, das erklärt, wie sich in Hochtemperatursupraleitern der sogenannte „Pseudogap“-Zustand bildet. Die Berechnungen sagen zwei gleichzeitig existierende Elektronenordnungen voraus. Supraleiter verlieren ab einer bestimmten Temperatur ihren elektrischen Widerstand und können Strom verlustfrei leiten.
„Es ist nicht auszuschließen, dass die neue ‚Pseudogap‘-Theorie auch die lang ersehnte Begründung liefert, warum bestimmte keramische Kupferoxidverbindungen im Gegensatz zu herkömmlichen metallischen Supraleitern bei so ungewöhnlich hohen Temperaturen ihren elektrischen Widerstand verlieren“, sagen Prof. Dr. Konstantin Efetov und Dr. Hendrik Meier vom Lehrstuhl für Theoretische Festkörperphysik der Ruhr-Universität Bochum. Die Erkenntnisse erzielten sie in enger Kooperation mit Dr. Catherine Pépin vom Institut für Theoretische Physik in Saclay bei Paris. Das Team berichtet in der Zeitschrift „Nature Physics“.

Sprungtemperatur bei keramischen Supraleitern deutlich höher als bei metallischen

Supraleitung tritt nur bei sehr niedrigen Temperaturen unterhalb der sogenannten Sprungtemperatur auf; in metallischen Supraleitern liegt diese nahe dem absoluten Nullpunkt von 0 Grad Kelvin; das entspricht etwa -273 Grad Celsius. Kristalline Keramikmaterialien können jedoch bei Temperaturen bis zu 138 Grad Kelvin supraleitend sein. Forscher rätseln seit 25 Jahren, was die physikalischen Grundlagen dieser Hochtemperatursupraleitung sind.

„Pseudogap“: Energielücke oberhalb der Sprungtemperatur

Im supraleitenden Zustand wandern Elektronen zu zweit in sogenannten Cooper-Paaren durch das Kristallgitter eines Materials. Um ein Cooper-Paar aufzubrechen, sodass zwei freie Elektronen entstehen, braucht es eine bestimmte Energiemenge. Dieser Unterschied in der Energie der Cooper-Elektronen und der freien Elektronen wird Energielücke genannt. In supraleitenden Kupferoxidverbindungen, den Cupraten, tritt eine ähnliche Energielücke unter bestimmten Umständen auch oberhalb der Sprungtemperatur auf – das „Pseudogap“ oder die Pseudoenergielücke. Kennzeichnend für das „Pseudogap“ ist, dass die Energielücke nur von Elektronen mit bestimmten Geschwindigkeitsrichtungen wahrgenommen wird. Das Modell des deutsch-französischen Teams erlaubt jetzt neue Einblicke in das physikalische Innenleben des „Pseudogap“-Zustands.

Zwei konkurrierende Elektronenordnungen im „Pseudogap“-Zustand

Laut Modell beinhaltet der „Pseudogap“-Zustand gleichzeitig zwei Elektronenordnungen: die d-Wellen-Supraleitung, bei der die Elektronen eines Cooper-Paares in einer Kleeblattform umeinander kreisen, und eine Quadrupoldichtewelle. Bei letzterer handelt es sich um eine spezielle elektrostatische Struktur, bei der an jedem Kupferatom im zweidimensionalen Kristallgitter ein Quadrupolmoment vorliegt – also zwei gegenüberliegende Bereiche negativer Ladung und zwei gegenüberliegende Bereiche positiver Ladung. d-Wellen-Supraleitung und Quadrupoldichtewelle konkurrieren im „Pseudogap“-Zustand miteinander. Aufgrund thermischer Fluktuationen kann sich keine der beiden Ordnungen durchsetzen. Kühlt man das System jedoch ab, werden die thermischen Fluktuationen schwächer und eine der beiden Ordnungen gewinnt die Oberhand: die Supraleitung. Die kritische Temperatur, bei der das passiert, kann in dem Modell wesentlich höher sein als die Sprungtemperatur von konventionellen metallischen Supraleitern. Das Modell könnte somit erklären, warum die Sprungtemperatur in den keramischen Supraleitern so viel höher liegt.

Cuprate

Hochtemperatursupraleiter auf Kupferoxidbasis werden auch Cuprate genannt. Zusätzlich zu Kupfer und Sauerstoff können sie zum Beispiel die Elemente Yttrium und Barium enthalten (YBa2Cu3O7). Damit das Material supraleitend wird, bringen Forscher “positive Löcher“, also Elektronenfehlstellen, in das Kristallgitter ein. Durch diese können die Elektronen in Cooper-Paaren „fließen“. Man spricht von Lochdotierung. Der „Pseudogap“-Zustand stellt sich nur ein, wenn das Cuprat weder zu wenig noch zu stark lochdotiert ist.

Titelaufnahme

K.B. Efetov, H. Meier, C. Pépin (2013): Pseudogap state near a quantum critical point, Nature Physics, DOI: 10.1038/NPHYS2641

Weitere Informationen

Prof. Dr. Konstantin Efetov, Lehrstuhl für Theoretische Festkörperphysik, Institut für Physik III der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24844, E-Mail: efetov@tp3.rub.de

Dr. Hendrik Meier, Lehrstuhl für Theoretische Festkörperphysik, Institut für Physik III der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-23744, E-Mail: hmeier@tp3.rub.de

Redaktion: Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften