Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Nature Physics“: Forscher differenzieren Störquellen in Halbleiter-Quantenelementen

29.07.2013
Ladungsinseln im Kristall
Forscherteam differenziert und eliminiert verschiedene Störquellen in Halbleiter-Quantenelementen
„Nature Physics“: Fluktuationen in Ladung und Spin erstmals separat analysiert

Kein Quantencomputer ohne Quantenbauelemente. Ein weiterer Schritt zur Realisierung von solchen Quantenelementen in einem Festkörper ist Forschern aus Bochum und Basel gelungen. Sie differenzierten unterschiedliche Störquellen in Halbleiter-Quantenbauelementen.


Ein Quantenpunkt aus Indiumarsenid in einem Galliumarsenid-Kristall. Die Aufnahme entstand mittels Transmissionselektronenmikroskopie.
Bild: Arne Ludwig und Jean-Michel Chauveau


Spinfluktuationen verbreitern die Emissionslinie (links). Ladungsfluktuationen verschieben die Emissionslinie zu anderen Wellenlängen (rechts). Grün: ohne Störquelle; blau: mit Störquelle.
Grafik: Arne Ludwig

Das wird in Zukunft helfen, noch reinere Materialien herzustellen, und somit den Grundstein für funktionstüchtige Quantenelemente legen. Prof. Dr. Andreas Wieck und Dr. Arne Ludwig vom Lehrstuhl für Angewandte Festkörperphysik der Ruhr-Universität Bochum berichten gemeinsam mit einem Baseler Team um Prof. Dr. Richard Warburton in der Zeitschrift „Nature Physics“.

Quantenpunkte: Hunderttausende Atome verhalten sich wie ein einzelnes

Ideale Quantenelemente sind einzelne Atome, die von ihrer Umgebung abgekoppelt sind. Diese lassen sich aber nur mit komplizierten optischen Apparaturen manipulieren und verschalten. Ziel der Forscher ist es daher, leichter manipulierbare Quantenelemente in Halbleitern zu erschaffen. Zu diesem Zweck stellen sie glatte Schichten aus Galliumarsenid her, auf denen sich – unter speziellen Bedingungen – Inseln aus Indiumarsenid abscheiden. Diese Inseln ziehen Elektronen an und halten sie gefangen. „Der starke räumliche Einschluss, den Elektronen in den Inseln verspüren, sorgt dafür, dass ein Elektron nicht mehr als Teilchen betrachtet werden kann; stattdessen ist es als Wellenfunktion über die Insel verteilt – ähnlich wie eine Elektronenwolke um einen Atomkern“, sagt Arne Ludwig. Die Inseln bestehen zwar aus Hunderttausenden von Atomen, haben aber vergleichbare Eigenschaften wie ein einzelnes Atom. Man bezeichnet sie daher auch als künstliche Atome.

Quanteneigenschaften gehen bei Verunreinigungen verloren

Die künstlichen Atome erfüllen theoretisch alle Voraussetzungen, um die Bausteine für Quantencomputer zu bilden. Über Lichtquanten könnte man Informationen aus ihnen auslesen oder auf sie übertragen. Das funktioniert aber nur, wenn das Material keine störenden Verunreinigungen enthält. Schleicht sich unter einer Billion Atome nur ein einziges verunreinigendes Teilchen ein, werden die Quanteneigenschaften instabil, sie fluktuieren, und können ganz verloren gehen. Schon früher lokalisierten die Baseler und Bochumer Forscher die Quellen der Störungen; nun spürten sie weitere auf und analysierten ihr Verhalten.

Ladungs- und Spinfluktuationen getrennt

Zwei Arten von Störungen unterschieden die Wissenschaftler im aktuellen Versuch: Ladungsfluktuationen und Fluktuationen im Kernspin, dem Drehimpuls der Atomkerne. Dazu bestimmten sie die Emissionslinien der künstlichen Atome, also die Wellenlängen des Lichts, das die künstlichen Atome aussenden. Ladungs- und Spinfluktuationen wirken sich unterschiedlich aus: Ladungsfluktuationen verschieben die Emissionslinien zu anderen Wellenlängen aufgrund des sogenannten Stark-Effekts. Spinfluktuationen verändern die Form der Emissionslinie; leichte Fluktuationen verbreitern die Linie, starke Fluktuationen machen aus einer Emissionslinie zwei. Dies beruht auf dem sogenannten Zeeman-Effekt, einer Aufspaltung der Energieniveaus im Magnetfeld der fluktuierenden Kernspins. Auf diese Art und Weise konnten die Physiker die beiden Arten der Störung erstmals trennen.

Quantenlicht aus Quantenpunkten

Um das Licht, das die Quantenpunkte emittieren, für Quantenbauelemente nutzen zu können, dürfen die Emissionslinien des Lichtes sich nicht weiter verbreitern als die von Heisenberg in seiner Unschärferelation postulierte unterste Grenze. Für Messfrequenzen oberhalb von 10 Kilohertz haben die Forscher die unterste Grenze nun erreicht. Das resultierende Zeitfenster von bis zu 100 Mikrosekunden ist lang genug, um etliche Photonen mit wohldefinierten Quanteneigenschaften zu erzeugen. „Diese Photonen können nun für die Übertragung von Quanteninformationen genutzt werden“, sagt Arne Ludwig. „Eine solche Quanteninformationsübertragung ist einerseits inhärent sicher und andererseits ein notwendiges Verbindungsglied zwischen einzelnen Elementen in einem Quantencomputer.“

Titelaufnahme

A.V. Kuhlmann, J. Houel, A. Ludwig, L. Greuter, D. Reuter, A.D.Wieck, M. Poggio, R.J.Warburton (2013): Charge and spin noise in a semiconductor quantum device, Nature Physics, DOI: 10.1038/nphys2688

Weitere Informationen

Dr. Arne Ludwig, Lehrstuhl für Angewandte Festkörperphysik, Fakultät für Physik und Astronomie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-25864, E-Mail: arne.ludwig@rub.de

Redaktion: Dr. Julia Weiler

Jens Wylkop | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blasen im Pulsarwind schlagen Funken
22.11.2017 | Max-Planck-Institut für Kernphysik

nachricht Eine Nano-Uhr mit präzisen Zeigern
21.11.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterien als Schrittmacher des Darms

22.11.2017 | Biowissenschaften Chemie

Ozeanversauerung schädigt Miesmuscheln im Frühstadium

22.11.2017 | Biowissenschaften Chemie

Die gefrorenen Küsten der Arktis: Ein Lebensraum schmilzt davon

22.11.2017 | Geowissenschaften