Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Nature Physics“: Forscher differenzieren Störquellen in Halbleiter-Quantenelementen

29.07.2013
Ladungsinseln im Kristall
Forscherteam differenziert und eliminiert verschiedene Störquellen in Halbleiter-Quantenelementen
„Nature Physics“: Fluktuationen in Ladung und Spin erstmals separat analysiert

Kein Quantencomputer ohne Quantenbauelemente. Ein weiterer Schritt zur Realisierung von solchen Quantenelementen in einem Festkörper ist Forschern aus Bochum und Basel gelungen. Sie differenzierten unterschiedliche Störquellen in Halbleiter-Quantenbauelementen.


Ein Quantenpunkt aus Indiumarsenid in einem Galliumarsenid-Kristall. Die Aufnahme entstand mittels Transmissionselektronenmikroskopie.
Bild: Arne Ludwig und Jean-Michel Chauveau


Spinfluktuationen verbreitern die Emissionslinie (links). Ladungsfluktuationen verschieben die Emissionslinie zu anderen Wellenlängen (rechts). Grün: ohne Störquelle; blau: mit Störquelle.
Grafik: Arne Ludwig

Das wird in Zukunft helfen, noch reinere Materialien herzustellen, und somit den Grundstein für funktionstüchtige Quantenelemente legen. Prof. Dr. Andreas Wieck und Dr. Arne Ludwig vom Lehrstuhl für Angewandte Festkörperphysik der Ruhr-Universität Bochum berichten gemeinsam mit einem Baseler Team um Prof. Dr. Richard Warburton in der Zeitschrift „Nature Physics“.

Quantenpunkte: Hunderttausende Atome verhalten sich wie ein einzelnes

Ideale Quantenelemente sind einzelne Atome, die von ihrer Umgebung abgekoppelt sind. Diese lassen sich aber nur mit komplizierten optischen Apparaturen manipulieren und verschalten. Ziel der Forscher ist es daher, leichter manipulierbare Quantenelemente in Halbleitern zu erschaffen. Zu diesem Zweck stellen sie glatte Schichten aus Galliumarsenid her, auf denen sich – unter speziellen Bedingungen – Inseln aus Indiumarsenid abscheiden. Diese Inseln ziehen Elektronen an und halten sie gefangen. „Der starke räumliche Einschluss, den Elektronen in den Inseln verspüren, sorgt dafür, dass ein Elektron nicht mehr als Teilchen betrachtet werden kann; stattdessen ist es als Wellenfunktion über die Insel verteilt – ähnlich wie eine Elektronenwolke um einen Atomkern“, sagt Arne Ludwig. Die Inseln bestehen zwar aus Hunderttausenden von Atomen, haben aber vergleichbare Eigenschaften wie ein einzelnes Atom. Man bezeichnet sie daher auch als künstliche Atome.

Quanteneigenschaften gehen bei Verunreinigungen verloren

Die künstlichen Atome erfüllen theoretisch alle Voraussetzungen, um die Bausteine für Quantencomputer zu bilden. Über Lichtquanten könnte man Informationen aus ihnen auslesen oder auf sie übertragen. Das funktioniert aber nur, wenn das Material keine störenden Verunreinigungen enthält. Schleicht sich unter einer Billion Atome nur ein einziges verunreinigendes Teilchen ein, werden die Quanteneigenschaften instabil, sie fluktuieren, und können ganz verloren gehen. Schon früher lokalisierten die Baseler und Bochumer Forscher die Quellen der Störungen; nun spürten sie weitere auf und analysierten ihr Verhalten.

Ladungs- und Spinfluktuationen getrennt

Zwei Arten von Störungen unterschieden die Wissenschaftler im aktuellen Versuch: Ladungsfluktuationen und Fluktuationen im Kernspin, dem Drehimpuls der Atomkerne. Dazu bestimmten sie die Emissionslinien der künstlichen Atome, also die Wellenlängen des Lichts, das die künstlichen Atome aussenden. Ladungs- und Spinfluktuationen wirken sich unterschiedlich aus: Ladungsfluktuationen verschieben die Emissionslinien zu anderen Wellenlängen aufgrund des sogenannten Stark-Effekts. Spinfluktuationen verändern die Form der Emissionslinie; leichte Fluktuationen verbreitern die Linie, starke Fluktuationen machen aus einer Emissionslinie zwei. Dies beruht auf dem sogenannten Zeeman-Effekt, einer Aufspaltung der Energieniveaus im Magnetfeld der fluktuierenden Kernspins. Auf diese Art und Weise konnten die Physiker die beiden Arten der Störung erstmals trennen.

Quantenlicht aus Quantenpunkten

Um das Licht, das die Quantenpunkte emittieren, für Quantenbauelemente nutzen zu können, dürfen die Emissionslinien des Lichtes sich nicht weiter verbreitern als die von Heisenberg in seiner Unschärferelation postulierte unterste Grenze. Für Messfrequenzen oberhalb von 10 Kilohertz haben die Forscher die unterste Grenze nun erreicht. Das resultierende Zeitfenster von bis zu 100 Mikrosekunden ist lang genug, um etliche Photonen mit wohldefinierten Quanteneigenschaften zu erzeugen. „Diese Photonen können nun für die Übertragung von Quanteninformationen genutzt werden“, sagt Arne Ludwig. „Eine solche Quanteninformationsübertragung ist einerseits inhärent sicher und andererseits ein notwendiges Verbindungsglied zwischen einzelnen Elementen in einem Quantencomputer.“

Titelaufnahme

A.V. Kuhlmann, J. Houel, A. Ludwig, L. Greuter, D. Reuter, A.D.Wieck, M. Poggio, R.J.Warburton (2013): Charge and spin noise in a semiconductor quantum device, Nature Physics, DOI: 10.1038/nphys2688

Weitere Informationen

Dr. Arne Ludwig, Lehrstuhl für Angewandte Festkörperphysik, Fakultät für Physik und Astronomie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-25864, E-Mail: arne.ludwig@rub.de

Redaktion: Dr. Julia Weiler

Jens Wylkop | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle
07.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Das Universum enthält weniger Materie als gedacht
07.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie