Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

National Center for Radiation Research in Oncology Dresden / Heidelberg gegründet

21.09.2010
Bundesforschungsministerin Schavan und Sächsische Wissenschaftsministerin Sabine von Schorlemer geben Startschuss für zukunftsweisendes Forschungszentrum / OncoRay Dresden verbindet sich mit HIRO aus Heidelberg

Mit der Enthüllung einer Stele fällt am Dienstagnachmittag (21. September) der Startschuss für das „National Center for Radiation Research in Oncology Dresden/Heidelberg“.

Die Forschungscluster OncoRay in Dresden sowie HIRO in Heidelberg schließen sich zusammen und verfügen so gemeinsam über eine Infrastruktur und Kompetenz in der Strahlenfor-schung, die selbst im internationalen Vergleich ihresgleichen sucht. An der Gründungsveranstaltung auf dem Campus der Dresdner Universitäts-medizin nahmen neben den Vertretern der Trägerinstitutionen aus Dresden und Heidelberg die Bundesministerin für Bildung und Forschung, Prof. Annette Schavan, die Sächsische Staatsministerin für Wissenschaft und Kunst, Prof. Sabine von Schorlemer, sowie Vertreter aus Wissenschaft und Politik teil.

„Das Nationale Zentrum kann einen bedeutenden Beitrag zur besseren Heilung von Krebserkrankungen leisten, nicht zuletzt dank der vorbildlichen Zusammenarbeit exzellenter Wissenschaftlerinnen und Wissenschaftler von Hochschulen und außeruniversitären Forschungseinrichtungen“, zeigte sich Bundesforschungsministerin Annette Schavan überzeugt. „Die Gründung dieses Zentrums ist ein gelungenes Beispiel für die Deutsche Einheit“, unterstrich die Ministerin angesichts des 20. Jahrestages der Wiedervereinigung auch die gesellschaftliche Bedeutung der Kooperation zwischen Dresden und Heidelberg. Die Sächsische Staatsministerin für Wissenschaft und Kunst, Prof. Sabine von Schorlemer, würdigte die Gründung des „National Center for Radiation Research in Oncology Dresden/Heidelberg“ als einen Beweis für die außerordentliche Leistungsfähigkeit der DresdnerForschungseinrichtungen sowie der Hochschulmedizin. "Oncoray entwickelt mit seiner Kompetenz in der Strahlenforschung modernste Therapiemöglichkeiten gegen den Krebs und erhöht damit die Heilungschancen von erkrankten Patienten. Es ist ein starker Partner in den „Life Sciences“ in Dresden und einer der Innovationsmotoren in der Spitzenforschung. Durch die Zusammenarbeit mit den Kollegen in Heidelberg wird auch in Zukunft diese Infrastruktur und gebündelte Kompetenz in der Strahlenforschung weltweit zur absoluten Spitzengruppe gehören", sagte die Wissenschaftsministerin und dankte in diesem Zusammenhang dem Bund und den an diesem Zentrum beteiligten Institutionen für die gute Kooperation. Auch die Landesexzellenzinitiative im Freistaat Sachsen habe den Weg für das Nationale Zentrum geebnet. Außerdem betonte Prof. Sabine von Schorlemer, dass die Gesundheitswirtschaft aufgrund des medizinischen Fortschritts und des demografischen Wandels inzwischen eine tragende Säule der Wertschöpfung geworden sei.

„Wir freuen uns, gemeinsam mit den Kollegen aus Heidelberg den Titel „National Center for Radiation Research in Oncology“ zu erhalten. Diese Auszeichnung sehen wir als Würdigung unserer seit mehr als zehn Jahren intensiv vorangetriebenen Forschungsarbeit“, so die beiden Sprecher des neuen OncoRay-Zentrums, Prof. Michael Baumann und Prof. Roland Sauerbrey (FZD). OncoRay ist eine gemeinsame Einrichtung der TU Dresden, des Universitätsklinikums Carl Gustav Carus Dresden sowie des Forschungszentrums Dresden-Rossendorf. Im Mittelpunkt der neuen Forschungseinrichtung in Dresden steht die Protonentherapie.

„Auf dem Campus der Dresdner Hochschulmedizin werden Wissenschaftler und Ärzte den Einsatz von Protonen in der Krebstherapie patientennah und jenseits kommerzieller Zwänge weiterentwickeln“, erklärt Prof. Michael Albrecht, Medizinischer Vorstand des Universitätsklinikums Dresden. Vorteil dieser ersten Protonentherapieanlage Ostdeutschlands ist, dass Patienten frühzeitig von weiteren Innovationen dieser noch neuen Therapieform profitieren werden. Das ist ein wesentlicher Grund für das Universitätsklinikum, sich an der Millioneninvestition zu beteiligen. „Um innovative Ergebnisse in der onkologischen Strahlenforschung zu erzielen, ist ein hohes Maß an interdisziplinärer Zusammenarbeit zwischen Medizinern, Physikern und Biologen notwendig. Dieses ist in Dresden vorhanden“, so der Wissenschaftliche Direktor des FZD, Prof. Roland Sauerbrey, „und zeigte sich zuletzt an den ersten erfolgreichen Zellbestrahlungen mit laserbeschleunigten Protonen, die an unserem Hochleistungslaser Draco im Forschungszentrum erst vor kurzem durchgeführt wurden.“ Neben der Erforschung neuer Strahlenarten entwickeln die Forscher von OncoRay unter anderem molekulare Medikamente, mit denen Tumorzellen empfindlicher für die Strahlentherapie werden. Ein weiteres Ziel der Wissenschaftler ist die Entwicklung biologischer Bildgebungsverfahren mit denen sich Tumorpatienten präziser und gleichzeitig individueller behandeln lassen.

Auch Heidelberg ist ein Vorreiter in der Strahlentherapieforschung: „Mit dem Heidelberger Institut für Radioonkologie HIRO verfügen wir über ein international besonders herausragendes Forschungscluster auf dem Gebiet der Strahlenforschung in der Onkologie“, sagt Professor Otmar Wiestler, Vorstandsvorsitzender des Deutschen Krebsforschungszentrums. HIRO vereinigt die Strahlentherapieforschung am Deutschen Krebsforschungszentrum (DKFZ), dem Universitätsklinikum Heidelberg, dem Heidelberger Ionenstrahltherapiezentrum HIT am Universitätsklinikum Heidelberg, sowie dem Nationalen Centrum für Tumorerkrankungen (NCT). So ist das Ende 2009 in Betrieb genommene HIT die europaweit einzige Ionenstrahltherapie-Anlage, die nicht nur Protonen, sondern auch schwere Ionen zur Bestrahlung bei Krebspatienten einsetzt. An der Entwicklung dieser Schwerionen-Therapie war auch das Forschungszentrum Dresden-Rossendorf beteiligt. Weltweit einmalig ist die drehbare Gantry, mit der der Therapiestrahl so um den Patienten herumgeführt wird, dass der Tumor von allen Seiten bestrahlt werden kann. Ebenso prominent sind die Entwicklungen aus dem Deutschen Krebsforschungszentrum zur Präzision der Bestrahlung durch intensitätsmodulierte Strahlenfelder oder die molekularbiologisch optimierte Therapie, die etwa darauf zielt, das Therapieansprechen von Tumoren durch den Nachweis molekularer Marker vorherzusagen.

Parallel zur Gründung des Nationalen Zentrums für Strahlenforschung in der Onkologie startet in Dresden das Bauvorhaben für eine patientenorientierte Forschungs- und Entwicklungsplattform für innovative Technologien zur Diagnostik und Strahlenbehandlung. Weltweit einmalig an dem Forschungsvorhaben ist, dass in dem bis 2013 fertig gestellten Neubau neben einem konventionellen Protonenbeschleuniger ein zweites Gerät aufgebaut wird, das die Protonen mithilfe von Laserstrahlen beschleunigt. Obgleich die neue Lasertechnologie die Teilchen mit einem wesentlich geringeren technischen wie finanziellen Aufwand beschleunigen kann, erwarten die Forscher von der Wirkungsweise und Intensität des Verfahrens Vorteile gegenüber den derzeitigen Geräten. Um dies wissenschaftlich überprüfen zu können, ist die neue Anlage so konzipiert, dass die konventionell und die per Laser beschleunigten Teilchen in das selbe Forschungslabor geleitet werden können. Mit dem mittelfristig entwickelten und aufgebauten Laser-Protonenbeschleuniger können dann auch Patienten behandelt werden. „Damit entsteht eine Hochtechnologieplattform zur patientenorientierten Forschung, die in dieser Form weltweit einmalig ist“, sind Prof. Baumann und Prof. Sauerbrey überzeugt. „Unsere beiden Standorte ergänzen sich in hervorragender Weise, gemeinsam bilden wir das gesamte Spektrum der Strahlentherapieforschung ab“, betonten die Initiatoren des Nationalen Zentrums Radiation Research in Oncology Dresden/Heidelberg, Michael Baumann und Otmar Wiestler. „Nur durch strategische Partnerschaften, in die auch die Industrie einbezogen werden muss, können wir im internationalen Wettbewerb bestehen.“

Kontakte
Heidelberger Institut für Radioonkologie (HIRO) c/o Deutsches Krebsforschungszentrum
Presse- und Öffentlichkeitsarbeit
Dr. Stefanie Seltmann
Telefon: +49 6221 42 2854
Fax: +49 6221 42 2968
E-Mail: S.Seltmann@dkfz.de
OncoRay – Zentrum für Medizinische Strahlenforschung in der Onkologie
c/o Universitätsklinikum Carl Gustav Carus
Pressestelle
Holger Ostermeyer
Telefon +49 351 458 41 62
Mobil: +49 162 255 08 99
Fax: +49 351 449 210 505
E-Mail: pressestelle@uniklinikum-dresden.de
Forschungszentrum Dresden-Rossendorf e. V.
Presse- und Öffentlichkeitsarbeit
Dr. Christine Bohnet
Tel.: +49 351 260 24 50
Mobil: +49 160 96 92 88 56
Fax: +49 351 260 27 00
E-Mail: c.bohnet@fzd.de
Universitätsklinikum Heidelberg
Pressestelle
Dr. Annette Tuffs
Tel.: +49 6221 56 45 36
Fax: +49 6221 / 56 45 44
E-Mail: annette.tuffs@med.uni-heidelberg.de
Weitere Informationen:
http://www.dkfz.de
http://www.oncoray.de
http://www.fzd.de
http://www.klinikum.uni-heidelberg.de

Holger Ostermeyer | idw
Weitere Informationen:
http://www.uniklinikum-dresden.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise