Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

NASA'S Fermi Proves Supernova Remnants Produce Cosmic Rays

15.02.2013
A new study using observations from NASA's Fermi Gamma-ray Space Telescope reveals the first clear-cut evidence the expanding debris of exploded stars produces some of the fastest-moving matter in the universe. This discovery is a major step toward understanding the origin of cosmic rays, one of Fermi's primary mission goals.

"Scientists have been trying to find the sources of high-energy cosmic rays since their discovery a century ago," said Elizabeth Hays, a member of the research team and Fermi deputy project scientist at NASA's Goddard Space Flight Center in Greenbelt, Md. "Now we have conclusive proof supernova remnants, long the prime suspects, really do accelerate cosmic rays to incredible speeds."

Cosmic rays are subatomic particles that move through space at almost the speed of light. About 90 percent of them are protons, with the remainder consisting of electrons and atomic nuclei. In their journey across the galaxy, the electrically charged particles are deflected by magnetic fields. This scrambles their paths and makes it impossible to trace their origins directly.

Through a variety of mechanisms, these speedy particles can lead to the emission of gamma rays, the most powerful form of light and a signal that travels to us directly from its sources.

Since its launch in 2008, Fermi's Large Area Telescope (LAT) has mapped million- to billion-electron-volt (MeV to GeV) gamma-rays from supernova remnants. For comparison, the energy of visible light is between 2 and 3 electron volts.

The Fermi results concern two particular supernova remnants, known as IC 443 and W44, which scientists studied to prove supernova remnants produce cosmic rays. IC 443 and W44 are expanding into cold, dense clouds of interstellar gas. These clouds emit gamma rays when struck by high-speed particles escaping the remnants.

Scientists previously could not determine which atomic particles are responsible for emissions from the interstellar gas clouds because cosmic ray protons and electrons give rise to gamma rays with similar energies. After analyzing four years of data, Fermi scientists see a distinguishable feature in the gamma-ray emission of both remnants. The feature is caused by a short-lived particle called a neutral pion, which is produced when cosmic ray protons smash into normal protons. The pion quickly decays into a pair of gamma rays, emission that exhibits a swift and characteristic decline at lower energies. The low-end cutoff acts as a fingerprint, providing clear proof that the culprits in IC 443 and W44 are protons.

The findings will appear in Friday's issue of the journal Science.

"The discovery is the smoking gun that these two supernova remnants are producing accelerated protons," said lead researcher Stefan Funk, an astrophysicist with the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University in Calif. "Now we can work to better understand how they manage this feat and determine if the process is common to all remnants where we see gamma-ray emission."

In 1949, the Fermi telescope's namesake, physicist Enrico Fermi, suggested the highest-energy cosmic rays were accelerated in the magnetic fields of interstellar gas clouds. In the decades that followed, astronomers showed supernova remnants were the galaxy's best candidate sites for this process.

A charged particle trapped in a supernova remnant's magnetic field moves randomly throughout the field and occasionally crosses through the explosion's leading shock wave. Each round trip through the shock ramps up the particle's speed by about 1 percent. After many crossings, the particle obtains enough energy to break free and escape into the galaxy as a newborn cosmic ray.

The supernova remnant IC 443, popularly known as the Jellyfish Nebula, is located 5,000 light-years away toward the constellation Gemini and is thought to be about 10,000 years old. W44 lies about 9,500 light-years away toward the constellation Aquila and is estimated to be 20,000 years old. Each is the expanding shock wave and debris formed when a massive star exploded.

The Fermi discovery builds on a strong hint of neutral pion decay in W44 observed by the Italian Space Agency's AGILE gamma ray observatory and published in late 2011.

NASA's Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership. Goddard manages Fermi. The telescope was developed in collaboration with the U.S. Department of Energy, with contributions from academic institutions and partners in the United States France, Germany, Italy, Japan, and Sweden.

For images and a video related to this finding, please visit:
http://go.nasa.gov/Yp14cJ
For more information about NASA's Fermi Gamma-ray Space Telescope and its mission, visit: http://www.nasa.gov/fermi

J.D. Harrington | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht Present-day measurements yield insights into clouds of the past
27.05.2016 | Paul Scherrer Institut (PSI)

nachricht NASA scientist suggests possible link between primordial black holes and dark matter
25.05.2016 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiroler Technologie zur Abwasserreinigung weltweit erfolgreich

Auf biologischem Weg und mit geringem Energieeinsatz wandelt ein an der Universität Innsbruck entwickeltes Verfahren in Kläranlagen anfallende Stickstoffverbindungen in unschädlichen Luftstickstoff um. Diese innovative Technologie wurde nun gemeinsam mit dem US-Wasserdienstleister DC Water weiterentwickelt und vermarktet. Für die Kläranlage von Washington DC wird die bisher größte DEMON®-Anlage errichtet.

Das DEMON®-Verfahren wurde bereits vor elf Jahren entwickelt und von der Universität Innsbruck zum Patent angemeldet. Inzwischen wird die Technologie in rund...

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Optische Uhren können die Sekunde machen

Eine Neudefinition der Einheit Sekunde auf der Basis von optischen Uhren wird realistisch

Genauer sind sie jetzt schon, aber noch nicht so zuverlässig. Daher haben optische Uhren, die schon einige Jahre lang als die Uhren der Zukunft gelten, die...

Im Focus: Computational High-Throughput-Screening findet neue Hartmagnete die weniger Seltene Erden enthalten

Für Zukunftstechnologien wie Elektromobilität und erneuerbare Energien ist der Einsatz von starken Dauermagneten von großer Bedeutung. Für deren Herstellung werden Seltene Erden benötigt. Dem Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg ist es nun gelungen, mit einem selbst entwickelten Simulationsverfahren auf Basis eines High-Throughput-Screening (HTS) vielversprechende Materialansätze für neue Dauermagnete zu identifizieren. Das Team verbesserte damit die magnetischen Eigenschaften und ersetzte gleichzeitig Seltene Erden durch Elemente, die weniger teuer und zuverlässig verfügbar sind. Die Ergebnisse wurden im Online-Fachmagazin »Scientific Reports« publiziert.

Ausgangspunkt des Projekts der IWM-Forscher Wolfgang Körner, Georg Krugel und Christian Elsässer war eine Neodym-Eisen-Stickstoff-Verbindung, die auf einem...

Im Focus: University of Queensland: In weniger als 2 Stunden ans andere Ende der Welt reisen

Ein internationales Forschungsteam, darunter Wissenschaftler der University of Queensland, hat im Süden Australiens einen erfolgreichen Hyperschallgeschwindigkeitstestflug absolviert und damit futuristische Reisemöglichkeiten greifbarer gemacht.

Flugreisen von London nach Sydney in unter zwei Stunden werden, dank des HiFiRE Programms, immer realistischer. Im Rahmen dieses Projekts werden in den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie sieht die Schifffahrt der Zukunft aus? - IAME-Jahreskonferenz in Hamburg

27.05.2016 | Veranstaltungen

Technologische Potenziale der Multiparameteranalytik

27.05.2016 | Veranstaltungen

Umweltbeobachtung in nah und fern

27.05.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Stressoren erkennen, Belastungen reduzieren, Fachwissen erlangen

27.05.2016 | Seminare Workshops

HDT SOMMERAKADEMIE 2016

27.05.2016 | Seminare Workshops

11 Millionen Euro für die Erforschung von Magnetfeldsensoren für die medizinische Diagnostik

27.05.2016 | Förderungen Preise