Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanoteilchen mit Lasern ordnen

08.04.2013
Ein Team von österreichischen Physikern schlägt vor, Nanoteilchen mit Hilfe von Laserlicht zu ordnen. Langfristig könnte das Verfahren zum Beispiel genutzt werden, um die Kristallisation von Biomolekülen zu steuern.

Das Team um Wolfgang Lechner, Steven Habraken und Peter Zoller hat viel Erfahrung mit der optischen Manipulation von Materie, seien es neutrale Atome, Ionen oder auch größere Objekte.

Nun haben sie einen Vorschlag veröffentlicht, wie sich optomechanische Methoden für Nanoengineering nutzen lassen. Dabei arbeiten die Theoretiker aus Innsbruck eng mit Wiener Physikern um Markus Aspelmeyer zusammen, die mit Experimenten an makroskopischen Objekten die Grenze zwischen Quantenphysik und klassischer Physik ausloten.

Optische Reibungskräfte

Die Nanoteilchen bestehen aus zwei dielektrischen Siliziumdioxid-Teilchen („Glaskügelchen“), die über ein DNA-Molekül miteinander verbunden werden. So entsteht ein Objekt, das wie eine winzige Hantel aussieht. Mit dieser DNA-Technik werden schon heute, komplexe Nanostrukturen hergestellt. Die österreichischen Physiker gehen aber einen Schritt weiter: Sie fangen die Nanoteilchen in einer Vakuumkammer und platzieren sie in einem optischen Resonator. Dort sorgen Laserstrahlen dafür, dass sich die Teilchen nur in einer Ebene bewegen können. Das Laserlicht hat dabei den gleichen Effekt wie Reibung und führt dazu, dass sich die Nanoteilchen in eine bestimmte Richtung orientieren.
Ordnung schaffen

„Die Nanoteilchen lassen sich mit dem Laserlicht in eine Richtung orientieren“, erzählt Wolfgang Lechner. „Sind die Nanoteilchen mit einer elektrischen Ladung versehen, ordnen sie sich zusätzlich in einer regelmäßigen Struktur an.“ So bildet sich im Resonator ein Kristall, der aber gleichzeitig auch die Eigenschaften einer Flüssigkeit hat. „Diese Struktur verhält sich wie ein Flüssigkristall, ähnlich jenen in LCD-Displays“, sagt Lechner. „Voraussetzung ist, dass sich die Nanoteilchen energetisch im Ungleichgewicht befinden. Es wird ständig Energie zugeführt und wieder abgeführt. Gemeinsam mit dem Laserlicht zwingt das die Teilchen in ein geordnetes System“, betont Lechner. Schon in Kürze wollen die Wiener Experimentalphysiker um Markus Aspelmeyer dieses Konzept im Labor umsetzen.

Herstellung von Medikamenten

„Es geht bei dieser Arbeit darum, Nanostrukturen zu verwenden und deren interne Organisation mit Laserlicht gezielt zu beeinflussen“, ergänzt Peter Zoller. Langfristig könnten ähnliche Ideen in der Produktion von Medikamenten nützlich sein. Dort werden Wirkstoffe zunächst in Lösungen hergestellt und dann kristallisiert, um später als Tabletten oder in Pulverform eingenommen zu werden. Für die Wirkung des Medikaments ist es dabei mit entscheidend, wie die Moleküle sich im Kristall anordnen. Hier könnte das neue Verfahren helfen, Ordnung zu schaffen. Auch ließe sich mit dem vorgeschlagenen Konzept die DNA zwischen den Glaskügelchen sehr genau vermessen.

Die Arbeit ist im Fachmagazin Physical Review Letters erschienen. Unterstützt wurden die Forscher vom österreichischen Wissenschaftsfonds FWF, der EU und der Tiroler Industrie.

Rückfragehinweis:

Dr. Wolfgang Lechner
Institut für Quantenoptik und Quanteninformation (IQOQI)
Österreichische Akademie der Wissenschaften (ÖAW)
Tel.: +43 512 507 4734
E-Mail: w.lechner@uibk.ac.at

Dr. Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Tel.: +43 512 507-32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at
Weitere Informationen:
http://dx.doi.org/10.1103/PhysRevLett.110.143604
- Cavity Optomechanics of Levitated Nanodumbbells: Nonequilibrium Phases and Self-Assembly. W. Lechner, S. J. M. Habraken, N. Kiesel, M. Aspelmeyer und P. Zoller. Phys. Rev. Lett. 110, 143604 (2013)
http://www.uibk.ac.at/th-physik/qo/
- Arbeitsgruppe „Quantum Optics and Quantum Information“

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die schnellste lichtgetriebene Stromquelle der Welt
26.09.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas
25.09.2017 | Universität Kassel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie