Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanotechnologie - Entwicklungsschub für nanoelektromechanische Systeme (NEMS)

07.03.2012
Ob in der Medizin, Pharmazie oder Lebensmitteltechnik: überall spielt der Nachweis von sehr geringen Konzentrationen einer Substanz eine wichtige Rolle.

Aussichtsreiche Kandidaten für entsprechende Sensoren sind sogenannte nanomechanische Resonatoren. Dabei handelt es sich um vibrierende Nano-Saiten, deren Schwingung sich messbar ändert, sobald der nachzuweisende Stoff daran bindet.

In den letzten Jahren sind diese Verfahren soweit perfektioniert worden, dass einzelne Atome detektiert werden können. Diese Analysen sind jedoch aufwendig, benötigen teure Geräte und funktionieren häufig nur bei einer Temperatur nahe dem absoluten Nullpunkt. Physiker der LMU München haben jetzt eine kompakte Sensor-Architektur im Nanometer-Maßstab entwickelt, die einfach zu bedienen ist und bei Raumtemperatur arbeitet.

Die Gruppe wird geleitet von Dr. Eva Weig, die auch Mitglied der Nanosystems Initiative Munich (NIM) ist. Die Arbeit der Wissenschaftler baut auf einer elektronischen Schnittstelle für nanomechanische Resonatoren auf, deren Prinzip sie bereits im Jahr 2009 in Nature veröffentlichten. Nun gelang es den Wissenschaftlern, eine integrierte Plattform für nanoelektromechanische Sensoren zu implementieren, mit der winzige Auslenkungen empfindlich und gleichzeitig robust ausgelesen werden können.

Im Zentrum des Nano-Sensors steht eine rund 50 Mikrometer lange und 200 Nanometer breite Saite aus Siliziumnitrid. Sie ist unter starker Zugspannung zwischen zwei Sockeln aus Quarz aufgehängt und wird rechts und links von je einer parallel laufenden, leicht erhöht angebrachten Goldelektrode flankiert. Die hohe Zugspannung bewirkt eine hohe mechanische Güte und führt dazu, dass die Saite mit sehr geringer Anregungsenergie zum Schwingen gebracht werden kann.

Die beiden Goldelektroden wirken als Kondensator. Das elektrische Feld, das beim Anlegen einer Spannung entsteht, koppelt an die Nano-Saite. In der 2009 in Nature publizierten Vorgängerarbeit wurde dieser Effekt zum Antreiben und Durchstimmen der Saitenschwingung eingesetzt. Nun wird er benutzt, um die Schwingung der Saite höchst empfindlich zu detektieren. Das vorgestellte Messprinzip basiert auf einer simplen Tatsache: Schwingt die Nano-Saite im elektrischen Feld auf und ab, so ändert sich die Kapazität zwischen den beiden Elektroden. Mit einer eleganten Ergänzung des bestehenden Versuchsaufbaues ist es den Münchner Wissenschaftlern gelungen, dieses winzige Signal nachzuweisen. Dazu bauten sie einen sogenannten Mikrowellen-Schwingkreis als Signal-Verstärker ein.

Dieser Schwingkreis entspricht einer Schaltung aus einer Spule und einem Kondensator, der mit den Goldelektroden verbunden wird. Er wird von einem Mikrowellensignal gespeist und überträgt das kombinierte Signal der Nano-Saite und des Mikrowellen-Schwingkreises. Auf diese Weise wird das von der vibrierenden Nano-Saite erzeugte Signal verstärkt, so dass selbst ihre thermische Bewegung sichtbar gemacht werden kann. Zusätzlich kann ein Mikrowellen-Schwingkreis nicht nur eine, sondern gleichzeitig zahlreiche Nano-Saiten auslesen, was die Benutzung deutlich vereinfacht.

„Hierdurch können in Zukunft hochintegrierte Sensoren entwickelt werden“, sagt Thomas Faust, der Erstautor der Studie.

Neben der damit erreichten Steigerung der Detektionsempfindlichkeit konnten die Forscher zeigen, dass der Mikrowellen-Schwingkreis auch direkt in die Schwingung des nano-mechanischen Resonators eingreifen kann. So kann die Schwingung der Nano-Saite durch die Rückwirkung des Schwingkreises direkt angetrieben und in Selbstoszillation versetzt werden. Hierbei verringert sich die Linienbreite der mechanischen Resonanz auf einige Hertz, wodurch sich die Empfindlichkeit eines zukünftigen Sensors nochmals erhöht.

Darüber hinaus ist das vorgestellte Bauteil deutlich einfacher zu handhaben als bestehende Lösungen. „Mit nur zwei Kabeln, die angeschlossen werden müssen, können im Prinzip tausende Resonatoren auf Knopfdruck ausgelesen werden.“, erklärt Eva Weig. Da auf kompliziert zu bedienende und störanfällige Komponenten komplett verzichtet werden konnte, soll das Verfahren in Zukunft auch abseits von Laborbedingungen eingesetzt werden können. (NIM, bige)

Die Arbeit wurde durch die Deutsche Forschungsgemeinschaft (DFG) sowie das FET-Open Projekt QNEMS der Europäischen Kommission gefördert.

Publikation:
Microwave cavity-enhanced transduction for plug and play nanomechanics at room tem-perature. T. Faust, P. Krenn, S. Manus, J.P. Kotthaus, and E.M. Weig. Nature Communications (Online)
Kontakt:
Dr. Eva Weig
Nanomechanics Group
Fakultät für Physik
Ludwig-Maximilians-Universität
Geschwister-Scholl-Platz 1
80539 München

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die Sonne: Motor des Erdklimas
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

nachricht Entfesselte Magnetkraft
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ein Feuerwerk der chemischen Forschung

24.08.2017 | Veranstaltungen

US-Spitzenforschung aus erster Hand: Karl Deisseroth spricht beim Neurologiekongress in Leipzig

24.08.2017 | Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eisberge: Mathematisches Modell berechnet Abbruch von Schelfeis

24.08.2017 | Geowissenschaften

Besseres Monitoring der Korallenriffe mit dem HyperDiver

24.08.2017 | Geowissenschaften

Rauch von kanadischen Waldbränden bis nach Europa transportiert

24.08.2017 | Geowissenschaften