Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanosensor misst gleichzeitig Kraft und Weg

02.04.2013
PTB-Entwicklung misst hochgenau und rückführbar – Lizenzpartner gesucht

Mit der Bedeutung der Nanotechnologie wächst auch der Bedarf an genauen Messungen kleiner Kräfte. Ein in der Physikalisch-Technischen Bundesanstalt (PTB) entwickelter Nanokraftsensor bietet hier mehrere Vorteile:


Rasterelektronenmikroskop-Aufnahme des Sensors
Abb.: PTB

Durch die geschickte Anordnung verschiedener Bauelemente ist er gleichzeitig Aktor und darin integrierter Sensor. So kann er kleinste Kräfte bis in den nN-Bereich hinein messen und parallel dazu Auslenkungen bis in den nm-Bereich erfassen. Weil er lithografisch relativ einfach hergestellt werden kann, lässt er sich kostengünstig produzieren. Der neue Sensor wird auf der Control, der internationalen Fachmesse für Qualitätssicherung vom 14. bis 17. Mai in Stuttgart, vorgestellt (Halle 1, Stand 1313).

Kleine Kräfte müssen beispielsweise gemessen werden, wenn es gilt, die Materialeigenschaften von biologischen Gewebeproben in der Medizin oder von neuen funktionalen Oberflächen beispielsweise für Konsumerprodukte zu erforschen. In diesen neuen Feldern von Forschung und Entwicklung kann der neue Sensor aus der PTB eingesetzt werden – aber auch zur Qualitätskontrolle der zunehmend in der Industrie eingesetzten Kunststoff-Mikroteile. Alle diese Oberflächen müssen durch taktile Verfahren dimensionell vermessen werden. Um das Messergebnis nicht zu verfälschen, sollten dabei die Antastkräfte möglichst klein sein. Eine Möglichkeit, Kräfte im Nanonewton-Bereich zerstörungsfrei, hochgenau und rückführbar zu messen, bieten Rasterkraftmikroskope. Dazu ist allerdings die genaue Kenntnis der Biegesteifigkeit der verwendeten Cantilever erforderlich. Sie lässt sich mit dem neuen Sensor aus der PTB sehr genau bestimmen. Darüber hinaus bietet der Sensor überall dort besondere Vorteile, wo es erforderlich ist, Kräfte und Wege gleichzeitig zu messen, etwa wenn parallel zur Eindringkraft auch die Eindringtiefe gemessen werden muss.

Die Entwicklung der PTB basiert auf einem mikroelektromechanischen System (MEMS), das aufgrund des lithografischen Herstellungsverfahrens einfach in großer Stückzahl hergestellt werden kann. Die zu messende Kraft wird über einen Schaft, an dem die Messspitze befestigt ist, auf ein kapazitives Messsystem übertragen. Mäanderförmige Federn, die am Substrat befestigt sind, halten diesen Schaft. Durch ihre spezielle Form wird eine kleine Federkonstante erreicht, sodass bei einer gegebenen zu messenden Kraft ein großer Weg zurückgelegt wird. Dadurch können kleine Kräfte bis zu 1 nN in einer linearen Dynamik bis zu 500 µN gemessen werden. Mit einem integrierten Faserinterferometer wird eine In-line-Kalibrierung der Schaftauslenkung ermöglicht.

Die Kombination der unterschiedlichen Sensoren in einem Messinstrument macht das Gerät zu einem Nanokraftaktor und gleichzeitig -sensor mit hoher Genauigkeit und gleichzeitig höchster Auflösung von Kraft und Weg. Die gleichzeitige Detektion von Kraft und Weg ermöglicht auch noch weitere, neue Anwendungen in Forschung und Entwicklung. Ein Funktionsmuster ist derzeit in der PTB im Einsatz. Aufgrund der vielfältigen Einsatzmöglichkeiten des Nanokraftsensors soll zusammen mit der Industrie ein marktgängiges Produkt entwickelt werden. Auf das Kraftmessgerät wurde unter der Nummer EP 2 199 769 A2 ein europäisches Patent angemeldet.

Nähere Informationen zu dem Sensor und weiteren Technologien der PTB gibt es auf der diesjährigen Control in Halle 1 auf Stand 1313.
(es/ptb)

Ansprechpartner:
Dr. Uwe Brand, Arbeitsgruppe 5.11 Härte und taktile Antastverfahren,
Telefon (0531) 592-5111, E-Mail: uwe.brand@ptb.de
Andreas Barthel, Q.33 Technologietransfer, Telefon (0531) 592-8307,
E-Mail: andreas.barthel@ptb.de

Erika Schow | PTB
Weitere Informationen:
http://www.ptb.de/de/aktuelles/archiv/presseinfos/pi2013/pitext/pi130402.html

Weitere Berichte zu: Control Forschung und Entwicklung Nanokraftsensor Nanosensor PTB Schaft Sensor

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics