Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanopartikel für optische Gläser

13.01.2010
Stuttgarter Physiker entwickeln neuartige metallische Beschichtung

Ob Brillen oder Kameraobjektive: Die meisten optischen Bauteile sind mit einer Antireflexschicht entspiegelt. In die Beschichtung von optischen Gläsern könnte nun auch bald die Nanotechnologie Einzug halten: Forscher des 1. Physikalischen Instituts der Universität Stuttgart haben herausgefunden, dass die Beschichtung mit metallischen Nanopartikeln die Lichtreflexion fast vollständig unterdrücken kann. Dies ermöglicht hauchdünne Beschichtungen, die beispielsweise für integrierte Optiken oder für Solarzellen interessant sind. Über die Untersuchungen berichtet die renommierte Fachzeitschrift "Physical Review B" in ihrer aktuellen Ausgabe.*)

Ein Metallfilm auf einer Glasscheibe macht diese, wie wir jeden Morgen in unserem Badezimmerspiegel sehen, undurchsichtig, wenn der Film nur dick genug ist: Alles Licht wird reflektiert. Macht man die Metallschicht dünner als ein Tausendstel Millimeter, so wird sie teildurchlässig, was beispielsweise für Spionspiegel eingesetzt wird. Wenn man jedoch nur wenige Millionstel Millimeter des Metalls aufdampft, passiert etwas Unerwartetes: Plötzlich geht mehr Licht durch die Glasscheibe als ohne das Metall. Wie die Forschergruppe von Prof. Martin Dressel und Dr. Bruno Gompf auf der Basis dieser Voruntersuchungen herausgefunden hat, wirken die metallischen Nanopartikel als Antireflexbeschichtung; und sie ist tausendmal dünner als bei herkömmlichen Methoden.

Die optischen Eigenschaften ultra-dünner Metallfilme unterscheiden sich drastisch von den Volumeneigenschaften. Filme von wenigen Nanometern Dicke sind nicht mehr geschlossen, sie bilden winzige Inseln. Die so genannten dielektrischen Eigenschaften werden durch einen enorm großen Brechungsindex charakterisiert, kurz bevor sich ein kontinuierlicher Metallfilm ausbildet. Dies erlaubt nun, Strukturen mit gezielt einstellbaren optischen Eigenschaften zu produzieren, wie sie beispielsweise bei der zukünftigen Realisierung photonisch integrierter Schaltkreise Anwendung finden könnten. Hieran arbeitet nun eine Gruppe von Physikern und Ingenieuren im Rahmen des neuen Research Centers for Photonic Engineering (SCoPE) der Universität Stuttgart.

*) Martin Hövel, Bruno Gompf und Martin Dressel: "Dielectric properties of ultrathin metal films around the percolation threshold", Physical Review B, 81, 035402 (2010)

Weitere Informationen bei Prof. Martin Dressel und Dr. Bruno Gompf,
1. Physikalisches Institut der Universität Stuttgart, Tel. 0711/685-64947,
e-mail: dressel@pi1.physik.uni-stuttgart.de, oder gompf@pi1.physik.uni-stuttgart.de

Ursula Zitzler | idw
Weitere Informationen:
http://www.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik