Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanopartikel brechen die Symmetrie des Lichts

06.10.2014

An Glasfasern gekoppelte Teilchen senden Licht gezielt nach links oder rechts. An der TU Wien gelang das durch eine ungewöhnliche Kopplung von Polarisation und Ausbreitungsrichtung.

Woher kennt ein Lichtstrahl den Unterschied zwischen links und rechts? An der TU Wien wurden winzige Teilchen nun dazu gebracht, Licht nicht wie sonst in beide Richtungen gleichermaßen abzustrahlen, sondern in einem Glasfaserkabel je nach Wunsch nach links oder nach rechts zu senden.


Ein Goldpartikel wird angestrahlt und sendet dann seinerseits Licht in eine Glasfaser - und zwar nur in die gewünschte Richtung.

Möglich wird das durch einen besonderen physikalischen Trick – das Ausnutzen der sogenannten „Spin-Bahn-Wechselwirkung“ des Lichts. Diese spezielle Schaltvorrichtung auf Nanometer-Größenskala könnte die Nanophotonik revolutionieren. Das Forschungsteam präsentierte die Ergebnisse nun in einer Publikation im wissenschaftlichen Journal „Science“.

Gold-Nanopartikel auf ultradünnen Glasfasern

Wenn man ein Teilchen mit Licht anregt, kann es danach seinerseits Licht aussenden. „Ein Teilchen im freien Raum wird allerdings in eine bestimmte Richtung immer genau so viel Licht strahlen wie in die Gegenrichtung“, erklärt Prof. Arno Rauschenbeutel vom Atominstitut der TU Wien. Seiner Forschungsgruppe gelang es nun, in einem Experiment diese Abstrahlungs-Symmetrie zu brechen - mit Nanopartikeln aus Gold, die an eine ultradünne Glasfaser angekoppelt wurden. Über die Art des einfallenden Laserlichtes lässt sich steuern, ob die Partikel ihr Licht in der Glasfaser nach links oder nach rechts schicken.

Fahrrad statt Flugzeugpropeller

Möglich wird das, weil Licht einen Eigendrehimpuls hat – den sogenannten Spin. Ähnlich wie ein Pendel, das in einer bestimmten Ebene schwingen oder sich im Kreis drehen kann, können Lichtwellen unterschiedliche Schwingungsrichtungen annehmen. Man spricht dann von polarisiertem Licht. „Eine gewöhnliche, ebene Welle hat an jedem Ort dieselbe Polarisation“, sagt Arno Rauschenbeutel. „Doch wenn sich die Intensität des Lichts lokal stark ändert, dann ergibt sich daraus auch eine lokal veränderliche Schwingung.“

Normalerweise findet die Schwingung des Lichts in einer Ebene statt, die senkrecht auf der Fortbewegungsrichtung steht. Schwingt das Licht kreisförmig, kann man sich das also vorstellen wie die Drehung eines Flugzeugpropellers. Dessen Achse entspräche dann dem Spin des Lichts und zeigt in die Richtung der Fortbewegung.

Doch das Licht, das sich durch ultradünne Glasfasern bewegt, hat ganz besondere Eigenschaften. Die Intensität des Lichts ist innerhalb der Glasfaser hoch, nach außen nimmt sie aber stark ab. „Dadurch kommt dort eine Schwingungskomponente entlang der Glasfaser hinzu“, sagt Arno Rauschenbeutel. Die Ebene der kreisförmigen Schwingung kippt um 90 Grad. „Die Ausbreitungsrichtung des Lichts steht dann senkrecht zum Spin des Lichts, genau wie sich ein Fahrrad in eine Richtung bewegt, die senkrecht zur Achse der Räder steht.“

Kopplung zwischen Drehrichtung und Ausbreitungsrichtung

Betrachtet man ein Fahrrad von der Seite, bestimmt der Drehsinn der Räder –im Uhrzeigersinn oder entgegen dem Uhrzeigersinn – ob die Fahrt nach rechts oder links geht. Genauso ist es nun bei dieser Art von Lichtschwingung:

Die Drehrichtung ist an die Ausbreitungsrichtung gekoppelt. Eine linksdrehende Lichtwelle muss sich im Glasfaserkabel in die andere Richtung ausbreiten als eine rechtsdrehende Welle. Diese Kopplung ergibt sich direkt aus der Geometrie der Glasfaser und den Gesetzen der Elektrodynamik. Man bezeichnet den Effekt als „Spin-Bahn-Wechselwirkung“.

Wenn man also ein Teilchen, das an die Glasfaser gekoppelt ist, gezielt so anregt, dass es Licht einer bestimmten Schwingungs-Drehrichtung emittiert, dann lässt sich auf diese Weise festlegen, ob das ausgesandte Licht in der Glasfaser nach links oder nach rechts laufen soll. Nachgewiesen wurde dieser Effekt nun im Experiment mit einem einzelnen Gold-Nanopartikel auf einer ultradünnen Glasfaser.

Die Durchmesser der Glasfaser und waren dabei etwa 250mal kleiner als der eines menschlichen Haars, der Goldpartikel war nochmals viermal kleiner. Damit sind die Durchmesser von Glasfaser und Partikel sogar geringer als die Wellenlänge des ausgesandten Lichts.

„Diese Technik zur Steuerung von Licht sollte sich rasch kommerziell einsetzen lassen – das ganze Experiment passt schon jetzt in einen Schuhkarton“, sagt Arno Rauschenbeutel. „Man könnte die Methode zum Beispiel in integrierten Schaltkreisen für Licht einsetzen, die eines Tages vielleicht die heutigen elektronischen Schaltkreise ersetzen.“

Rückfragehinweis:
Prof. Arno Rauschenbeutel
Atominstitut
Vienna Center for Quantum Science and Technology
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-(1)-58801-141761
arno.rauschenbeutel@tuwien.ac.at

Weitere Informationen:

http://www.sciencemag.org/content/346/6205/67.abstract?sid=b4232f8f-8ae8-4695-ba... Originalpublikation

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie