Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanometer-Tomographie: kleinste Katalysatorteilchen erblicken

17.11.2011
Mit Elektronen und Computern die mobile Brennstoffzelle erforschen
(BAM-Pressemitteilung Nr.12/2011)

Erstmals konnte ein Forscher-Team von BAM und Helmholtz-Zentrum-Berlin (HZB) kleinste Ruthenium-Katalysatorpartikel für Brennstoffzellen mit bis zu zwei Nanometer Durchmesser durch Elektronen-Tomographie dreidimensional vermessen, um ihre chemisch aktive Oberfläche zu bewerten. Durch die Unterscheidbarkeit der freien von der im Kohlenstoffträger verdeckten Oberfläche kann die Leistungsfähigkeit des Katalysators für den zukünftigen „Strom aus dem Autotank“ optimiert werden.

Ein Katalysator begünstigt chemische Reaktionen, ohne sich selbst zu verbrauchen. Im Falle der Brennstoffzelle erzeugt er aus Wasserstoff die Ladungsträger für den elektrischen Strom. Hier ersetzt Ruthenium das bisher verwendete Platin, das für die Produktion mobiler Brennstoffzellen als unwirtschaftlich gilt und entsprechende Investitionen zurzeit bremst. Die im Vergleich zu Platin geringere katalytische Wirkung des Rutheniums erfordert für die effiziente Nutzung die genaue Erkennung seiner reaktiven Oberfläche durch nanometergenaue räumliche Abbildung.

Diese Aufgabe haben die Wissenschaftler im BMBF-Projekt RuN-PEM gelöst und darüber jetzt im renommierten „Journal of the American Chemical Society“ (JACS) berichtet [1]. Dazu wurden Katalysatoren funktionsgerecht auf einer Carbon-Matrix präpariert und im Transmissions-Elektronenmikroskop durchstrahlt. Im Unterschied zur konventionellen (zweidimensionalen) Mikroskopie erfordert das tomographische 3D-Verfahren die Durchstrahlung unter vielen Rotationswinkeln. Die resultierenden Projektionen sind jedoch unvermeidlich „verzerrt“ und unvollständig. Auch nach einer Entzerrung der Projektionen mittels markanter Referenzteilchen aus Gold wird die Rekonstruktion der tomographischen Schnittbilder mit konventionellen mathematischen Methoden zu unscharf. Derzeit wird nur mit dem an der BAM entwickelten Algorithmus DIRECTT (Direkte iterative Rekonstruktion von Computer-tomographischen Trajektorien) durch computertomographische Rekonstruktion die 3D-Abbildung mit etwa einem Nanometer Genauigkeit erreicht, sodass eine präzise Bestimmung der spezifischen Oberfläche der elliptisch geformten Katalysator-Partikel ermöglicht wird.

Vor allem unter Nutzung des Rekonstruktions-Algorithmus DIRECTT kann die Elekt-ronentomographie die Erforschung des neuen technischen Katalysatortyps entschei¬dend vorantreiben.

[1]
R. Grothausmann, G. Zehl, I. Manke, S. Fiechter, P. Bogdanoff, I. Dorbandt, A. Kupsch, A. Lange, M.P. Hentschel, G. Schumacher, J. Banhart: Quantitative Structural Assessment of Heterogeneous Catalysts by Electron Tomography, J. Am. Chem. Soc. 133 (45) (2011), 18161-18171, DOI: 10.1021/ja2032508.
Kontakt: Dr. rer. nat. Andreas Kupsch
Fachgruppe 8.5 Mikro ZfP
Telefon: +49 30 8104-3692
E-Mail: andreas.kupsch@bam.de

Dr. Ulrike Rockland | idw
Weitere Informationen:
http://www.bam.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie sich Zellen gegen Salmonellen verteidigen

05.12.2016 | Biowissenschaften Chemie

Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen

05.12.2016 | Förderungen Preise

Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik

05.12.2016 | Energie und Elektrotechnik