Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanomagnetismus im Röntgenlicht

21.03.2017

Das derzeit modernste Rasterröntgenmikroskop wird vom Stuttgarter Max-Planck-Institut für Intelligente Systeme am Helmholtz-Zentrum Berlin betrieben.

Das Rasterröntgenmikroskop MAXYMUS ist an der Berliner Synchrotronstrahlungsquelle BESSY II am Helmholtz-Zentrum Berlin beheimatet. Die wissenschaftliche Betreuung erfolgt durch Dr. Markus Weigand aus der Abteilung „Moderne Magnetische Systeme“ des Max-Planck-Institutes für Intelligente Systeme (MPI-IS), unter Leitung von Frau Professor Dr. Gisela Schütz.


Links: Röntgenmikroskopische Aufnahme eines magnetischen Skyrmions Rechts: Schnappschuss der Spinwellen, die von einem magnetischen Plättchen durch Mikrowellenanregung erzeugt werden

© MPI-IS Stuttgart

MAXYMUS steht für „MAgnetic X-raY Micro- and UHV Spectroscope“. Das Besondere an diesem Rasterröntgenmikrospektroskop ist dabei seine variable Probenumgebung und sein breites Anwendungsspektrum. „Man kann dabei ultraschnelle Prozesse mit einer über 20 mal besseren Auflösung im Vergleich zum Lichtmikroskop beobachten“, erläutert Professor Dr. Gisela Schütz.

„Neben dieser Kombination von Orts- und Zeitauflösung ist die extrem hohe Empfindlichkeit auf den Magnetismus von Nanostrukturen einzigartig“. Im Bereich der Untersuchung zur Magnetisierungsdynamik von Nanostrukturen hält die Abteilung den Weltrekord in dieser Kombination von Zeit (10 Pikosekunden, d.h. 100 Milliarden Bilder pro Sekunde) und Ortsauflösung (15 Nanometer = 0,000 015 mm).

„Unseren Nutzern stehen mit MAXYMUS damit äußerst attraktive Experimentiermög-lichkeiten für Untersuchungen nicht nur im Bereich des Magnetismus zur Verfügung“ erläutert Dr. Markus Weigand, der als Max-Planck-Gruppenleiter in Berlin das leistungsstarke Röntgenmikroskop betreut und stetig weiterentwickelt.

Auch Forscher aus anderen Bereichen, die z.B. die Zusammensetzung von Schadstoffpartikeln in der Atmosphäre oder die Nanochemie von nanoskopischen Lithiumbatteriepartikeln untersuchen möchten, finden hier Antworten auf brennende Fragen. Die Leistungen von MAXYMUS können auf Antrag von externen Nutzern in Anspruch genommen werden. Zahlreiche langjährige Kooperationen mit Wissenschaftlern verschiedenster Forschungseinrichtungen sind auf diesem Weg entstanden und die Nachfrage nach der Belegung von „Strahlzeiten“ an MAXYMUS wächst kontinuierlich.

Aber gerade im Bereich des Nanomagnetismus erregen seit Kurzem neue spannende Phänomene sowie technologische Konzepte Aufsehen, die mit der erforderlichen Schnelligkeit und räumlichen Schärfe nur im MAXYMUS “beleuchtet“ werden können.

Aus der erfolgreichen Zusammenarbeit von Max-Planck Forschern und externen Wissenschaftlern wie z.B. des Helmholtz-Zentrums Dresden-Rossendorf (HZDR), der Universität Mainz, dem Paul-Scherrer Institut in Villingen in der Schweiz und dem CNRS in Paris resultierten im Jahr 2016 mehrere hochrangige Publikationen in den renommierten Zeitschriften Nature Physics, Nature Materials und Nature Nanotechnology.

Sie beinhalten grundlegende Studien zum Bereich der sogenannten Magnonik. Die ultraschnellen und kurzwelligen Spinwellen (im Teilchenbild Magnonen) sollen eine strom- und damit energiesparende Datenprozessierung ermöglichen, die durch die heutige ausgefeilte Mikrowellentechnik gesteuert werden kann. „Diese Spinwellen sichtbar zu machen, vergleichbar zu Wellen, die ein Stein erzeugt, der ins Wasser fällt, ist selbst für einen Wissenschaftler sehr beeindruckend“ erklärt Dr. Sebastian Wintz vom PSI in Villigen, Schweiz (siehe Abb.).

Ebenso spektakulär ist die Beobachtung der Entstehung und Manipulation von sog. Skyrmionen, magnetischer Wirbel, die sich wie Teilchen endlicher Masse verhalten und mit minimalen Strömen gesteuert werden können (siehe Abb.). Auch hier wird in den unzähligen Beiträgen auf entsprechenden internationalen Konferenzen die Relevanz für eine zukünftige Anwendung auf dem Gebiet der Informationstechnologie heiß diskutiert. Kai Litzius, Doktorand am Lehrstuhl von Prof. Kläui in Mainz, führt aus: „Indem wir die Bewegung einzelner kleinster Skyrmionen beobachten können, lernen wir Wichtiges über deren fundamentalen magnetischen Wechselwirkungen.“

Mit der geplanten Verkürzung der Röntgenlichtpulse, die von BESSY II in den nächsten Jahren realisiert werden sollen, und die erheblich größere Ortauflösung durch Nutzung der Streuung von Röntgenstrahlen ließe sich die Genauigkeit des MAXYMUS um Größenordnungen verbessern. „„Die heutigen attraktiven Möglichkeiten lassen sich im Prinzip noch erheblich optimieren. Wir haben noch lange nicht die physikalischen Grenzen erreicht.“ sagt Dr. Markus Weigand voraus.

Publikationen:

S. Wintz, V. Tiberkevich, M. Weigand, J. Raabe, J. Lindner, A. Erbe, A. Slavin, J. Fassben-der, „Magnetic vortex cores as tunable spin-wave emitters“,
Nature Nanotechnology, 2016, (DOI: 10.1038/nnano.2016.117)

Kai Litzius, Ivan Lemesh, Benjamin Krüger, Pedram Bassirian, Lucas Caretta, Kornel Richter Felix Büttner, Koji Sato, Oleg A. Tretiakov, Johannes Förster, Robert M. Reeve, Markus Weigand, Iuliia Bykova, Hermann Stoll, Gisela Schütz, Geoffrey S.D. Beach and Mathias Kläui, „Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy“, Nature Physics, 2017 (DOI: 10.1038/nphys4000)

Seonghoon Woo, Kai Litzius, Benjamin Krüger, Mi-Young Im, Lucas Caretta, Kornel Rich-ter, Maxwell Mann, Andrea Krone, Robert M. Reeve, Markus Weigand, Parnica Agrawal, Ivan Lemesh, Mohamad-Assaad Mawass, Peter Fischer, Mathias Kläui and Geoffrey S.D. Beach, „Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets”
Nature Materials, 2016 (DOI: 10.1038/nmat4593)

C. Moreau-Luchaire, C.Moutafis, N. Reyren, J.Sampaio, C.A.F. Vaz, N.Van Horne, K. Bouzehouane, K.Garcia, C. Deranlot, P. Warnicke, P. Wohlhüter,J.-M. George, M. Weigand, J.Raabe, V.Cros and A.Fert, “Additive interfacial chiral interaction in multi-layers for stabilization of small individual skyrmions at room temperature”
Nature Nanotechnology, 2016 (DOI: 10.1038/nnano.2015.313)

Weitere Informationen:

http://www.is.mpg.de/de/schuetz

Annette Stumpf | Max-Planck-Institut für Intelligente Systeme

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften