Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanoforschung: Proteinkräne für die Biofabrik

27.09.2012
Um neue biomolekulare Maschinerien aufzubauen, müssen einzelne Proteine nanometergenau platziert werden. LMU-Wissenschaftler haben nun ein entsprechendes Verfahren entwickelt: Grünes Licht für Proteintransporte!

Mit einem Rasterkraftmikroskop (AFM), an dessen nanometerfeiner Spitze Moleküle binden, können einzelne Biomoleküle aufgenommen und auf wenige Nanometer genau an einer bestimmten Stelle abgesetzt werden. Entwickelt wurde dieses sogenannte „Single-Molecule Cut & Paste“ (SMC&P) von Forschern um den LMU-Physiker Professor Hermann Gaub.

Allerdings war das Konzept zunächst auf DNA-Moleküle beschränkt. Die molekularen Maschinen der Zelle bestehen jedoch aus Proteinen. Das Aneinanderreihen derartiger Maschinen zu noch komplexeren Vorrichtungen ist ein wichtiges Ziel der Nanotechnologie - einerseits, um die Arbeitsweise der Zelle besser zu verstehen, und andererseits um neue, nanoskalige Maschinerien zu entwickeln und einzusetzen.

Um dies möglich zu machen, haben LMU-Wissenschaftler die SMC&P Technik bedeutend erweitert: Nun können auch Proteine wie am Fließband mit der AFM-Spitze aus einem Lager abgeholt und nanometergenau in einem Konstruktionsbereich wieder abgesetzt werden. „Allerdings herrschen auf der Nanoskala in Flüssigkeit und bei Raumtemperatur Bedingungen, die uns an einen extremen Sturm erinnern würden“, sagt Mathias Strackharn, der Erstautor der neuen Studie. Deshalb ist es wichtig, die Moleküle festzuhalten – im Lager, an der AFM-Spitze und auch im Konstruktionsbereich.
Leuchtende Ampelmännchen beweisen Effizienz

Die Kräfte, mit denen die Proteine festgehalten werden, müssen dabei genau aufeinander abgestimmt sein - und so gering, dass die äußerst empfindlichen Proteine nicht zerstört werden. Dies erreichten die Wissenschaftler durch den kombinierten Einsatz von Antikörpern, sogenannten Zinkfinger-Molekülen und DNA-Ankern. „Dass die Technik funktioniert, konnten wir beweisen, indem wir hunderte von einzelnen, fluoreszierenden GFP-Protein transportierten und zu einem Mikrometer-großen Ampelmännchen anordneten“, erklärt Strackharn.

Die Stärke der Technik liegt darin, dass jetzt komplexe Proteinkonstellationen direkt getestet werden können - etwa wie sich eine Kopplung einzelner Enzyme auswirkt und was für eine Rolle ihr Abstand spielt. Eine weitere Anwendung liegt in der Entwicklung künstlicher Cellulosome, also Nanomaschinen, mit denen pflanzliche Biomasse abgebaut wird. „Wenn wir diese aus einzelnen Proteinen aufgebauten Enzym-Fließbänder effizient nachbauen können, haben wir eventuell einen bedeutenden Beitrag zur energetischen Nutzung nachwachsender Rohstoffe getan“, erläutert Strackharn mögliche Implikationen für die Zukunft. (JACS September 2012) göd

Publikation:
Nanoscale Arrangement of Proteins by Single-Molecule Cut-and-Paste
Mathias Strackharn, Diana A. Pippig, Philipp Meyer, Stefan W. Stahl, and Hermann E. Gaub
J. Am. Chem. Soc., 2012, 134 (37), pp 15193–15196
doi: 10.1021/ja305689r

Kontakt:
Mathias Strackharn
Abteilung für Angewandte Physik/Biophysik
Tel: 089/2180-3545
Fax: 089/2180-2050
http://www.biophysik.physik.uni-muenchen.de/personen/phd-stud/strackharn_mathias/index.html

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht CAST-Projekt setzt Dunkler Materie neue Grenzen
23.05.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Heiße Materialien: Fachartikel zum pyroelektrischen Koeffizienten
23.05.2017 | Technische Universität Bergakademie Freiberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie