Nano-Tröpfchen nahe dem absoluten Nullpunkt: TU-Forscher beeinflussen erstmals magnetische Eigenschaften

Die Teilchen entwickeln dann eine eigene Wellen-Natur, die die Forscher für quantenphysikalische Versuche nutzen. Wissenschaftern des Instituts für Experimentalphysik ist es nun erstmals gelungen, die magnetischen Eigenschaften der gekühlten, nur wenige Nanometer großen Tröpfchen gezielt zu beeinflussen. Die Ergebnisse ihrer Arbeit präsentieren die Forscher in der neuesten Ausgabe der renommierten „Physical Review Letters“.

Wer begreifen will, wie die Welt sich zusammensetzt, muss bei ihren kleinsten Teilchen beginnen. Noch immer gibt die Natur viele Rätsel auf, qualitativ hochwertige Grundlagenforschung ist daher weiter gefragt: „Unser Erkenntnisinteresse bezieht sich auf ein besseres Verständnis der Eigenschaften von Stoffen, durch das wir aber zugleich beitragen wollen, dass Anwendungen für die Praxis weiter erschlossen werden“, erklärt Wolfgang Ernst, Leiter des Instituts für Experimentalphysik, der den jüngsten Erfolg gemeinsam mit seinen Mitarbeitern Carlo Callegari und Markus Koch erzielt hat. Potenzielle Anwendungen für Forschung in der Quantenphysik finden sich etwa in der Elektronik: Die Quantencomputer der Zukunft sollen leistungsfähiger und weit sicherer sein als heutige Rechner.

„Angedockte“ Atome

Das besondere Interesse der Grazer Physiker gilt den „kleinsten Größen“: Sie kühlen Helium-Tröpfchen mit nur etwa 8 Nanometern Durchmesser, also einem Tausendstel eines Haares, auf eine Temperatur möglichst nahe am absoluten Nullpunkt. An diese Tröpfchen „docken“ sie in einer selbst entwickelten Maschine Atome anderer Stoffe an – die Forscher sprechen von „Dotation“. Beim darauffolgenden Flug durch einen Laserstrahl, ein magnetisches Feld und Mikrowellen bekommen die dotierten Teilchen schließlich eine gewünschte magnetische Ausrichtung. Mit einem weiteren Laser messen die Forscher die Veränderung und erhalten so den Beweis für die gezielte Beeinflussung der atomaren Elemente.

Originalarbeit:
Markus Koch, Gerald Auböck, Carlo Callegari & Wolfgang E. Ernst: Coherent Spin Manipulation and ESR on Superfluid Helium Nanodroplets. Physical Review Letters 103, 035302 (2009).
Rückfragen:
Univ.-Prof. Mag. Dr.rer.nat. Wolfgang Ernst
Institut für Experimentalphysik
Email: wolfgang.ernst@tugraz.at
Tel: +43 (0) 316 873 8140

Media Contact

Alice Senarclens de Grancy idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer