Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano-Röhrchen als Spinfilter

02.08.2010
Alle Elektronen tragen ein magnetisches Moment, Spin genannt, das grundsätzlich in zwei Richtungen zeigen kann.

Setzt man geeignete Nano-Röhrchen aus Kohlenstoff einem hohen Magnetfeld aus, so lassen sie bei einem bestimmten Wert nur Elektronen mit einer Spinrichtung durchfließen.

Erhöht man das Magnetfeld weiter, so fanden Wissenschaftler von Forschungszentrum Dresden-Rossendorf (FZD) und den Universitäten Regensburg und Delft nun heraus, so werden nur Elektronen mit der anderen Spinrichtung durchgelassen. Dieser überraschende Effekt wurde erstmals beobachtet und hat seinen Grund in den exotischen elektronischen Eigenschaften der für neuartige Speichertechnologien interessanten Röhren.

Die untersuchten Nano-Röhren bestehen aus aufgerolltem Graphen, eine genau eine Atomlage starke Schicht aus Graphit – das ist das gleiche Material, aus dem auch Bleistiftminen gemacht werden. Abhängig davon, wie das Graphen-Blatt zu einem Röhrchen aufgewickelt ist – gerade oder schief –, erhält man einen isolierenden Halbleiter oder ein leitfähiges Metall. Sowohl diese elektrischen als auch die mechanischen Eigenschaften der Röhren lassen sie für neue Technologien wie die Nano-Elektronik als besonders geeignet erscheinen. Bei Festigkeiten, die die von Stahl um ein Vielfaches übertrifft, können die Röhren hohe Ströme transportieren und die dabei entstehende Wärme hervorragend abführen.

Die Regensburger Wissenschaftler stellten verschiedenartige Nano-Röhren mit Durchmessern von rund eineinhalb Nanometern und Längen von einigen 10 Mikrometern her. Die Röhrchen mussten zudem elektrisch kontaktiert werden, um die elektronischen Eigenschaften in hohen Magnetfeldern untersuchen zu können. Die Experimente selbst fanden im Hochfeld-Magnetlabor Dresden des FZD statt und resultierten in verblüffenden Ergebnissen, die vor kurzem in der Fachzeitschrift Physical Review B veröffentlicht wurden.

Bei den winzigen Dimensionen der Nano-Röhren aus Kohlenstoff versagt die klassische Beschreibung und die Elektronen gehorchen quantenmechanischen Gesetzen. Die Elektronen können sich nur in ganz bestimmten Bahnen mit festgelegten Energien in den Röhren bewegen. Das Magnetfeld verschiebt nun die energetische Lage der Bahnen, sodass ein metallisches Nano-Röhrchen zum Isolator wird. Eine besondere Überraschung boten leitfähige, schräg aufgewickelte Nano-Röhrchen, denn dort ist die Bahn der Elektronen gekoppelt mit dem Spin. Das ist eine Art Drehung um die eigene Achse, die ein magnetisches Moment erzeugt. Der Spin der Elektronen kann genau zwei Richtungen bzw. Zustände einnehmen, weist also eine Schalt-Eigenschaft auf, die einen Einsatz für neuartige Speichertechnologien nahelegt. Dies will sich die so genannte Spintronik zunutze machen will, stößt aber auf ein grundlegendes Problem: es fehlt bisher ein Bauelement, mit dem die Elektronenspins beliebig polarisiert werden können, mit dem also die Richtung der Spins nach Wunsch eingestellt werden kann.

Den Wissenschaftlern aus Dresden, Regensburg und Delft gelang es nun, abhängig vom Magnetfeld alle Spins erst in die eine, dann in die andere Richtung zu schalten. Damit existiert erstmals eine verlässliche Methode, um in einem für die Nano-Elektronik geeigneten Material den Spin wunschgemäß einzustellen. Das schräg aufgerollte Nano-Röhrchen aus Kohlenstoff jedenfalls war bei drei und elf Tesla (Tesla ist ein Maß für die Magnetfeld-Stärke) jeweils anders spinpolarisiert, d. h. bei drei Tesla zeigten alle Spins in die eine, bei elf in die andere Richtung. Allerdings funktioniert der neue Spinfilter derzeit nur bei tiefen Temperaturen von wenigen Grad über dem absoluten Temperatur-Nullpunkt. Dieses Ergebnis ist umso erstaunlicher, als bisher davon ausgegangen wurde, dass die Kopplung der Elektronenspins an die Bahnbewegung bei Kohlenstoff-Nanoröhren kaum eine Bedeutung habe.

Kohlenstoff-Nanoröhren jedenfalls, so scheint es, steht eine bedeutende Zukunft bevor, was den Einsatz in unterschiedlichen technologischen Feldern anbelangt. Ein Feld, so legen die aktuellen Ergebnisse der Experimente im Hochfeld-Magnetlabor Dresden des FZD nahe, könnte die Spintronik sein, und zwar wenn es gelänge, Nano-Bauteile oder -Transistoren aus Kohlenstoff-Röhrchen herzustellen, die in Schaltkreisen zuverlässig funktionierten.

Publikation
S.H. Jhang, M. Marganska, Y. Skourski, D. Preusche, B. Witkamp, M. Grifoni, H. an der Zant, J. Wosnitza, C. Strunk: Spin-orbit interaction in chiral carbon nanotubes probed in pulsed magnetic fields, in: Physical Review B 82, 041404(R) (2010).

DOI: 10.1103/PhysRevB.82.041404

Weitere Informationen
Prof. Dr. Joachim Wosnitza
Direktor des Instituts Hochfeld-Magnetlabor Dresden am FZD
Tel.: +49 351 260 – 3524
E-Mail: j.wosnitza@fzd.de
Prof. Dr. Chrisoph Strunk
Institut für experimentelle und angewandte Physik
Universität Regensburg
Tel.: +49 941 943 3199
Fax: +49 941 943 3196
E-Mail: Christoph.Strunk@physik.uni-regensburg.de
Pressekontakt
Dr. Christine Bohnet
Leiterin Presse- und Öffentlichkeitsarbeit
Forschungszentrum Dresden-Rossendorf (FZD)
Bautzner Landstr. 400, 01328 Dresden
Tel.: + 49 351 260 - 2450 oder +49 160 969 288 56
presse@fzd.de
Alexander Schlaak M.A.
Pressereferent
UR - Universität Regensburg
Universitätsstr. 31, 93053 Regensburg
Tel.: +49 941 943 - 5566
Fax: +49 941 943 - 4929
Alexander.Schlaak@verwaltung.uni-regensburg.de

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fzd.de
http://www.uni-regensburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der Krümmung einen Schritt voraus

27.06.2017 | Informationstechnologie

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungsnachrichten

Überschwemmungen genau in den Blick nehmen

27.06.2017 | Informationstechnologie