Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In Nano-Pyramiden eingesperrte Elektronen

27.09.2012
Quantenpunkte sind Nano-Strukturen aus halbleitenden Materialien, die sich recht einfach herstellen lassen und in ihrem Verhalten einzelnen Atomen ähneln.
Aufgrund ihrer besonderen Eigenschaften sehen Forscher in Quantenpunkten ein hohes Potenzial für technologische Anwendungen. Hierfür muss man jedoch das Verhalten der darin „gefangenen“ Elektronen viel besser verstehen. Dresdner Physiker konnten erstmals beobachten, wie Elektronen in einzelnen Quantenpunkten Energie aufnehmen und als Licht wieder abgeben. Die Ergebnisse wurden vor kurzem in der Fachzeitschrift „Nano Letters“ veröffentlicht.

Quantenpunkte sehen aus wie winzige Pyramiden. In solch einer einzelnen Nano-Pyramide befinden sich immer nur ein oder zwei Elektronen, die quasi die engen Wände um sich herum „spüren“ und deshalb in ihrer Beweglichkeit stark eingeschränkt sind. Wissenschaftler aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR), der TU Dresden und dem Leibniz-Institut für Festkörper- und Werkstoffforschung (IFW) Dresden haben nun die besonderen Energiezustände der gefangenen Elektronen in einzelnen Quantenpunkten untersucht.
Scharfe Energieniveaus

Das Verhalten von Elektronen in einem Material bestimmt prinzipiell dessen Eigenschaften. Wegen der räumlichen Begrenzung in allen drei Raumrichtungen können Elektronen in einer Nano-Pyramide nur ganz bestimmte Energieniveaus besetzen – deshalb werden Quantenpunkte auch „künstliche Atome“ genannt. Von der chemischen Zusammensetzung des Halbleiter-Materials, aber auch von der Größe der Nano-Pyramiden hängt die genaue Lage dieser Energieniveaus ab. „Die scharf begrenzten Energieniveaus werden beispielsweise in sehr energieeffizienten Lasern auf der Basis von Quantenpunkten genutzt. Das Licht wird dadurch erzeugt, dass ein Elektron von einem energetisch höheren Niveau auf ein tieferes zurückfällt. Der Energieunterschied zwischen den beiden Niveaus bestimmt dabei die Farbe des Lichts.“, erklärt Dr. Stephan Winnerl vom HZDR.

Elektronen in einzelnen Quantenpunkten sichtbar gemacht

Den Dresdner Forschern um Dr. Winnerl ist es erstmals gelungen, Übergänge zwischen Energieniveaus in einzelnen Quantenpunkten mit Hilfe von Infrarotlicht abzufragen. Dabei galt es, eine besondere Schwierigkeit zu überwinden: Die Pyramiden aus Indiumarsenid oder Indium-Galliumarsenid entstehen zwar „von selbst“ durch eine bestimmte Art des Kristallwachstums, aber ihre Größe schwankt in einem gewissen Bereich. Untersucht man sie mit infrarotem Licht, so sieht man verwaschene Signale, weil die Elektronen in unterschiedlich großen Pyramiden auf verschiedene Infrarot-Energien ansprechen. Somit ist es wichtig, sich die gefangenen Elektronen in einem einzelnen Quantenpunkt anzusehen.

Ein Justierlaser fokussiert die Messspitze des Mikroskops. In der Verlängerung des Laserstrahls kommt von oben die Spitze, darunter befindet sich die Einheit zur Bewegung der Probe. HZDR

Die Wissenschaftler nutzen hierfür eine besondere Methode: die Nahfeld-Mikroskopie. Laserlicht wird auf eine metallische, weniger als 100 Nanometer dicke Spitze eingestrahlt, die das Licht stark bündelt – und zwar hundertfach kleiner als die Lichtwellenlänge, welche sonst die Grenze in der „normalen“ Optik mit Linsen und Spiegeln darstellt. Wird das gebündelte Licht auf genau eine Pyramide gelenkt, gibt es Energie an die Elektronen ab und hebt sie so auf ein höheres Energieniveau an. Beobachtet man bei diesem Vorgang das von der Spitze gestreute Infrarotlicht, so wird dieser Energieübertrag messbar. Mit der Nahfeld-Mikroskopie gehen zwar hohe Signalverluste einher, doch ist der Lichtstrahl immer noch stark genug, um die Elektronen in einer Nano-Pyramide anzuregen. Die Methode ist gleichzeitig so empfindlich, dass man damit ein Bild im Nanometerbereich erzeugen kann, auf dem sich die ein oder zwei Elektronen in einem Quantenpunkt als deutlicher Kontrast abzeichnen. So konnte Dr. Winnerl mit seinen Kollegen vom HZDR sowie mit Physikern von TU und IFW Dresden das Verhalten der Elektronen in einem Quantenpunkt sehr genau studieren und zu dessen Verständnis beitragen.

Infrarot-Licht vom Freie-Elektronen-Laser

Für die Experimente kam das infrarote Licht vom Freie-Elektronen-Laser im HZDR zum Einsatz. Dieser spezielle Laser ist für die Untersuchungen eine ideale Strahlungsquelle im infraroten Bereich, weil die Energie seines Lichts so eingestellt werden kann, dass sie genau zu den Energieniveaus in den Quantenpunkten passt. Auch liefert der Laser derart intensive Strahlung, dass die methodisch zwangsläufigen Verluste leicht wettgemacht werden können.
„Als nächstes wollen wir das Verhalten von Elektronen in Quantenpunkten bei tieferen Temperaturen durchleuchten.“, sagt Dr. Winnerl. „Von diesen Messungen erhoffen wir uns noch genauere Einblicke in das gefangene Leben der Elektronen. Wir wollen insbesondere die Wechselwirkung der Elektronen untereinander, aber auch mit den Schwingungen des Kristallgitters noch viel besser verstehen.“ Der Freie-Elektronen-Laser bietet jedenfalls dank der intensiven Laserblitze in einem großen, frei wählbaren Spektralbereich beste Voraussetzungen für die Methode der Nahfeld-Mikroskopie am Standort Dresden, die besonders von der engen Zusammenarbeit mit Prof. Lukas Eng von der TU Dresden im Rahmen von DRESDEN-concept profitiert.

Publikation: R. Jacob, S. Winnerl u.a.: „Intersublevel spectroscopy on single InAs-quantum dots by terahertz near-field microscopy“, in Nano Letters, Band 12 (2012), S. 4336 (DOI: 10.1021/nl302078w)

Weitere Informationen:
Prof. Manfred Helm | Dr. Stephan Winnerl
Institut für Ionenstrahlphysik und Materialforschung im HZDR
Tel. 0351 260-2260 | -3522
m.helm@hzdr.de | s.winnerl@hzdr.de

Pressekontakt:
Dr. Christine Bohnet
Pressesprecherin
Tel. 0351 260-2450 oder 0160 969 288 56
c.bohnet@hzdr.de
Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Materie, Gesundheit und Energie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie verhält sich Materie unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
• Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
• Wie nutzt man Ressourcen und Energie effizient und sicher?
Zur Beantwortung dieser wissenschaftlichen Fragen werden fünf Großgeräte mit teils einmaligen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.

Das HZDR ist seit 1.1.2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Leipzig, Freiberg und Grenoble und beschäftigt rund 900 Mitarbeiter – davon ca. 400 Wissenschaftler inklusive 140 Doktoranden.

Dr. Christine Bohnet | Helmholtz-Zentrum
Weitere Informationen:
http://www.hzdr.de/
http://pubs.acs.org/toc/nalefd/12/8

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf dem Weg zur optischen Kernuhr
19.04.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Laser erzeugt Magnet – und radiert ihn wieder aus
18.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics