Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano-Magnetschalter, die sich selbst zusammenbauen

20.06.2011
Magnetische Speichermedien wie Festplatten haben den Umgang mit Informationen revolutioniert: Täglich gehen wir mit riesigen Mengen magnetisch gespeicherter Daten um, elektronische Bauteile mit hoher Empfindlichkeit sind dafür die Basis.

Um die Datenkapazitäten weiter zu erhöhen, sind noch wesentlich kleinere Bauteile notwendig. Gemeinsam mit Experten aus Grenoble und Straßburg haben Wissenschaftler des Instituts für Nanotechnologie (INT) am KIT einen Nano-Magnetschalter konstruiert – Vorbild war ein Mechanismus aus der Natur.

Was tun, wenn es für die Herstellung eines derartig winzigen Bauteils keine Werkzeuge mehr gibt? Eine Möglichkeit: Man bringt die Einzelteile dazu, sich eigenständig zu dem gewünschten Produkt zusammenzufügen. Das Forscherteam um Professor Mario Ruben vom INT hat sich für die Produktion eines Nano-Magnetschalters einen Trick bei der Natur abgeschaut: Die Wissenschaftler brachten synthetische Haftgruppen so an Magnetmoleküle an, dass diese von selbst an der richtigen Position auf einer Nanoröhre andocken.

In der Natur entsteht in einem ähnlich selbst-organisierenden Prozess beispielsweise ein grünes Blatt – ganz ohne den Eingriff einer übergeordneten Instanz. Die Einführung solcher Prinzipien in der Herstellung elektronischer Bauteile ist ein Novum und stellt einen Paradigmenwechsel dar.

Den Nano-Magnetschalter hat ein europäisches Team aus Wissenschaftlern des Centre National de la Recherche Scientifique (CNRS) in Grenoble und des Institut de Physique et Chimie des Matériaux der Universität Straßburg und des INT gemeinsam konstruiert. Eine Besonderheit des Schalters ist, dass er nicht wie konventionelle elektronische Bauteile aus anorganischen Materialien wie Silizium, Metallen, Oxiden oder ähnlichem besteht, sondern aus weichen Materialien wie Kohlenstoffnanoröhren und Molekülen.

Magnetisch ist ein einzelnes Metallatom, Terbium, welches in organisches Material eingebettet wird. Das Terbium reagiert hochempfindlich auf externe Magnetfelder. Die Information, wie dieses Atom sich entlang eines solchen Magnetfeldes ausrichtet, wird sehr effektiv an den durch die Nanoröhre fließenden Strom weitergegeben. So gelang es der CNRS-Forschungsgruppe um Dr. Wolfgang Wernsdorfer in Grenoble, den Magnetismus im Umfeld des Nano-Schalters elektrisch auszulesen – dies ermöglicht prinzipiell den Zugang zu höheren Speicherdichten, aber öffnet zugleich Tore zu wesentlich leistungsfähigeren Methoden der Informationsverarbeitung z. B. in Quantencomputern.

Die Funktionsweise des Nano-Magnetschalters beschreiben die Wissenschaftler in der Juli-Ausgabe der Zeitschrift Nature Materials (DOI-Nr. 10.1038/Nmat3050) zunächst für tiefe Temperaturen von um einem Grad Kelvin, das entspricht -272 Grad Celsius. Das Konsortium arbeitet nun darauf hin, die Arbeitstemperaturen des Bauteiles in naher Zukunft weiter steigern zu können.

Link Nature Materials Artikel:
http://www.nature.com/nmat/journal/vaop/ncurrent/pdf/nmat3050.pdf
Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Weiterer Kontakt:

Tu-Mai Pham-Huu
Presse, Kommunikation und
Marketing (PKM)
Tel.: +49 721 608-48751
Fax: +49 721 608-45681
E-Mail: tu-mai.pham-huu@kit.edu

Monika Landgraf | idw
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie