Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano-Magnetschalter, die sich selbst zusammenbauen

20.06.2011
Magnetische Speichermedien wie Festplatten haben den Umgang mit Informationen revolutioniert: Täglich gehen wir mit riesigen Mengen magnetisch gespeicherter Daten um, elektronische Bauteile mit hoher Empfindlichkeit sind dafür die Basis.

Um die Datenkapazitäten weiter zu erhöhen, sind noch wesentlich kleinere Bauteile notwendig. Gemeinsam mit Experten aus Grenoble und Straßburg haben Wissenschaftler des Instituts für Nanotechnologie (INT) am KIT einen Nano-Magnetschalter konstruiert – Vorbild war ein Mechanismus aus der Natur.

Was tun, wenn es für die Herstellung eines derartig winzigen Bauteils keine Werkzeuge mehr gibt? Eine Möglichkeit: Man bringt die Einzelteile dazu, sich eigenständig zu dem gewünschten Produkt zusammenzufügen. Das Forscherteam um Professor Mario Ruben vom INT hat sich für die Produktion eines Nano-Magnetschalters einen Trick bei der Natur abgeschaut: Die Wissenschaftler brachten synthetische Haftgruppen so an Magnetmoleküle an, dass diese von selbst an der richtigen Position auf einer Nanoröhre andocken.

In der Natur entsteht in einem ähnlich selbst-organisierenden Prozess beispielsweise ein grünes Blatt – ganz ohne den Eingriff einer übergeordneten Instanz. Die Einführung solcher Prinzipien in der Herstellung elektronischer Bauteile ist ein Novum und stellt einen Paradigmenwechsel dar.

Den Nano-Magnetschalter hat ein europäisches Team aus Wissenschaftlern des Centre National de la Recherche Scientifique (CNRS) in Grenoble und des Institut de Physique et Chimie des Matériaux der Universität Straßburg und des INT gemeinsam konstruiert. Eine Besonderheit des Schalters ist, dass er nicht wie konventionelle elektronische Bauteile aus anorganischen Materialien wie Silizium, Metallen, Oxiden oder ähnlichem besteht, sondern aus weichen Materialien wie Kohlenstoffnanoröhren und Molekülen.

Magnetisch ist ein einzelnes Metallatom, Terbium, welches in organisches Material eingebettet wird. Das Terbium reagiert hochempfindlich auf externe Magnetfelder. Die Information, wie dieses Atom sich entlang eines solchen Magnetfeldes ausrichtet, wird sehr effektiv an den durch die Nanoröhre fließenden Strom weitergegeben. So gelang es der CNRS-Forschungsgruppe um Dr. Wolfgang Wernsdorfer in Grenoble, den Magnetismus im Umfeld des Nano-Schalters elektrisch auszulesen – dies ermöglicht prinzipiell den Zugang zu höheren Speicherdichten, aber öffnet zugleich Tore zu wesentlich leistungsfähigeren Methoden der Informationsverarbeitung z. B. in Quantencomputern.

Die Funktionsweise des Nano-Magnetschalters beschreiben die Wissenschaftler in der Juli-Ausgabe der Zeitschrift Nature Materials (DOI-Nr. 10.1038/Nmat3050) zunächst für tiefe Temperaturen von um einem Grad Kelvin, das entspricht -272 Grad Celsius. Das Konsortium arbeitet nun darauf hin, die Arbeitstemperaturen des Bauteiles in naher Zukunft weiter steigern zu können.

Link Nature Materials Artikel:
http://www.nature.com/nmat/journal/vaop/ncurrent/pdf/nmat3050.pdf
Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Weiterer Kontakt:

Tu-Mai Pham-Huu
Presse, Kommunikation und
Marketing (PKM)
Tel.: +49 721 608-48751
Fax: +49 721 608-45681
E-Mail: tu-mai.pham-huu@kit.edu

Monika Landgraf | idw
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics