Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano-Krater: Hochgeladene Ionen verdampfen Atome von Kristalloberfläche

28.08.2008
Wissenschaftler vom Forschungszentrum Dresden-Rossendorf (FZD) konnten ein weiteres Mal erfolgreich ihr Know-how in der Nano-Strukturierung von Oberflächen demonstrieren.

Hierzu setzten sie hochgeladene Ionen ein, also Atome, denen ein Großteil ihrer Elektronen entzogen wurde. Jedes einzelne hochgeladene Ion hat somit "potentielle" (interne) Energie gespeichert, die beim Auftreffen auf die Oberfläche freigesetzt wird.


Raster-Kraft-Mikroskop-Aufnahme von Nano-Löchern auf der Kaliumbromid-Oberfläche nach Beschuss mit 25fach geladenen Xenon-Ionen. Bild: FZD

So entstehen winzig kleine Löcher in der obersten Materialschicht. Die Löcher selbst sind wenige Nanometer breit und genau eine Atomlage tief, also nur ein Bruchteil eines Nanometers. Darüber berichten die Forscher in der aktuellen Ausgabe der Fachzeitschrift "Physical Review Letters".

Die Nanotechnologie ist die Schlüsseltechnologie des 21. Jahrhunderts. Viele Forschergruppen arbeiten daran, immer kleinere Strukturen punktgenau bis hinab in den Nanometer-Bereich (1 Nanometer = 1 Millionstel Millimeter) zu erzeugen. Oft verwenden sie dabei Materialien, die heute in der Mikroelektronik zum Einsatz kommen. Die Mikroelektronik selbst hat die Schwelle zur Nanotechnologie überschritten, denn lithographische Verfahren für die Strukturierung der Chips bewegen sich bereits in der Größenordnung unterhalb eines Mikrometers (1 Mikrometer = 1 Tausendstel Millimeter).

Potentielle Energie lässt Atome aus der Oberfläche verdampfen

Neuen, effektiven und zuverlässigen Verfahren für die Nano-Strukturierung von Halbleitermaterialien kommt somit eine große Bedeutung zu. Die Ionenstrahl-Technologie spielt für die Strukturierung von Chips eine große Rolle und ein Schwerpunkt der Forschungen im Ionenstrahlzentrum des FZD ist die Erzeugung von Nanostrukturen mittels Ionen (geladenen Atomen).

Die Rossendorfer Gruppe um Dr. Stefan Facsko setzt hier auf hochgeladene Ionen. Wenn man einem Atom einen Großteil seiner Elektronen entzieht, so hat das zurückbleibende Ion viel potentielle Energie gespeichert. Diese interne Energie wird in sehr kurzer Zeit auf unvorstellbar kleinem Raum freigesetzt und kann somit für die effektive Modifizierung von Oberflächen benutzt werden.

Als Material für den Beschuss mit hochgeladenen Ionen wählten die Forscher in ihren aktuellen Untersuchungen Kaliumbromid. Dabei handelt es sich um ein kristallines und nichtleitendes Material, das beispielsweise bei der Herstellung von Linsen und Prismen Verwendung findet. Solche Isolator-Materialien kommen aber auch in der Mikro-Elektronik als Gate-Material vor. Vielfach untersucht ist die Elektronen-Bestrahlung von Kaliumbromid. Die Elektronen dringen tief in die Oberfläche ein und erzeugen dort viele kleine Defekte im Gitter des Kristalls. Einige der Defekte wandern an die Oberfläche und können dort zur Erzeugung einzelner Leerstellen führen.

Diese bekannte Methode ist nicht sehr effektiv, da sehr viele Elektronen notwendig sind, um kollektiv ein einzelnes Loch zu bilden. Anders bei hochgeladenen Ionen. Jedes einzelne Teilchen gibt seine hohe potentielle Energie direkt an die Oberfläche des Materials ab und erzeugt deshalb besonders effektiv viele Leerstellen auf kleinstem Bereich, die sich zu einem Krater zusammenfügen. Die Anzahl der abgelösten Atome hängt dabei nur von der abgegebenen inneren Projektilenergie ab.

Somit ist die Größe der Nano-Strukturen, die erzeugt werden, durch die Wahl der Ladung des Ions einstellbar. Verblüffend ist, dass die Tiefe immer genau einer Atomlage der Materialoberfläche entspricht. Der Grund hierfür ist, dass die frei werdende potentielle Energie der Ionen an der Oberfläche konzentriert ist und nur hier Atome aus dem Gitter verdampfen können. Dabei ist die Effizienz der Ionen-Projektile verblüffend: im Gegensatz zur schon lange bekannten, direkten Elektronen-Bestrahlung erzeugt jedes Ion genau ein wohldefiniertes Nano-Loch. Ein weiterer Vorteil der hochgeladenen Ionen ist, dass sie keine Schäden in tiefer liegenden Kristallschichten hervorrufen. Hochgeladene Ionen stellen damit ein vielversprechendes Instrument zur effektiven Modifikation von Materialoberflächen dar.

Die durchgeführten Experimente mit hochgeladenen Ionen im Rossendorfer Ionenstrahlzentrum führten zu äußerst interessanten Effekten, die es nun weiter zu untersuchen gilt. Zunächst treibt die Forscher das grundlegende Interesse zur Wechselwirkung von langsamen hochgeladenen Ionen mit Festkörper-Oberflächen an, denn sie wollen die Anregung, die durch die potentielle Energie der Ionen verursacht wird, noch besser verstehen. Dr. Stefan Facsko: "Uns reizt es aber auch, hochgeladene Ionen in Zukunft gezielt auf der Materialoberfläche zu platzieren, also den Auftreffpunkt genau zu bestimmen. Wenn uns das gelänge, könnten wir komplexe Strukturen aus lauter Nano-Löchern schreiben, die genau eine Atomlage tief sind. In diese Strukturen könnte man selektiv Metall aufdampfen und hätte so interessante "plasmonische" Strukturen mit vielversprechenden Eigenschaften".

Veröffentlichung:
R. Heller, S. Facsko, R. A. Wilhelm, W. Möller, "Defect Mediated Desorption of the KBr(001) Surface Induced by Single Highly Charged Ion Impact", in: Physical Review Letters, Vol. 101 (9/2008), DOI: 10.1103/PhysRevLett.101.096102.
Weitere Informationen:
Dr. Stefan Facsko / René Heller
Institut für Ionenstrahlphysik und Materialforschung
Forschungszentrum Dresden-Rossendorf (FZD)
Tel.: 0351 260 - 2987 / - 3577
Email: s.facsko@fzd.de / r.heller@fzd.de
Information:
Das Forschungszentrum Dresden-Rossendorf (FZD) hat das Ziel, strategisch und langfristig ausgerichtete Spitzenforschung in politisch und gesellschaftlich relevanten Forschungsthemen wie Energie, Gesundheit und Schlüsseltechnologien zu leisten. Folgende Fragestellungen stehen dabei im Mittelpunkt:

- Wie verhält sich Materie unter dem Einfluss hoher Felder und in winzigen Dimensionen?

- Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?

- Wie schützt man Mensch und Umwelt vor technischen Risiken?
Diese Fragestellungen werden in strategischen Kooperationen mit Forschungs- und Industriepartnern bearbeitet. Ein weiterer Schwerpunkt ist der Betrieb von sechs einmaligen Großgeräten, die auch externen Nutzern zur Verfügung stehen.

Das FZD wird von Bund und Land gefördert und beschäftigt mehr als 700 Personen. Bei der Auswahl neuer Mitarbeiter stehen Qualität und Internationalität an erster Stelle. Die Ausbildung von wissenschaftlichem und technischem Nachwuchs erfolgt auf hohem Niveau und in enger Zusammenarbeit mit den Hochschulen. Auf die Vereinbarkeit von Familie und Beruf achtet das FZD in besonderem Maße.

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fzd.de/
http://link.aps.org/abstract/PRL/v101/e096102

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen