Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano-Dünen mit dem Ionenstrahl

08.09.2015

Viele Halbleiter-Elemente der modernen Technik – von integrierten Schaltkreisen über Solarzellen bis hin zu LED-Leuchten – basieren auf winzigen Nano-Strukturen. Die feinen Muster werden bisher meist aufwändig erzeugt. Würden diese sich selbst organisieren, könnte das die Herstellung von Halbleiter-Elementen deutlich beschleunigen und so auch deren Kosten senken.

Dr. Stefan Facsko vom Helmholtz-Zentrum Dresden-Rossendorf (HZDR) und Dr. Xin Ou von der Chinesischen Akademie der Wissenschaften zeigen jetzt im Fachmagazin „Nanoscale“, wie die Selbstorganisation von Nano-Strukturen mit dem Ionenstrahl funktioniert.


Mit dem Werkzeug des Ionenstrahls gelingen am Helmholtz-Zentrum Dresden-Rossendorf selbstorganisierte Muster und Strukturen im Nano-Maßstab.

SIMIT, Chines. Akademie der Wiss.

Für ihre verblüffende Methode verwenden die Forscher Ionenstrahlen, das sind schnelle, elektrisch geladene Atome. Sie richten einen breiten Strahl von Edelgas-Ionen auf eine Scheibe mit dem Halbleiter-Material Galliumarsenid, das zum Beispiel für die Produktion von Fotozellen oder Leuchtdioden verwendet wird. „Man könnte den Ionen-Beschuss mit einem Sandstrahlgebläse vergleichen.

Das heißt, die Ionen fräsen die Oberfläche des Ziels ab. Dort entstehen dann wie von selbst die gewünschten Nano-Strukturen“, erläutert Dr. Facsko. Die fein ziselierten und regelmäßigen Strukturen erinnern an Sanddünen, also an vom Wind geschaffene, natürliche Strukturen. Das Ganze passiert allerdings in einer Nano-Welt mit einem Abstand von gerade einmal 50 Nanometern zwischen zwei Dünen – das Kopfhaar eines Menschen ist 2000-mal dicker.

Ionenbeschuss unter Temperatur

Bei normaler Zimmertemperatur zerstört der Ionenstrahl allerdings die Kristallstruktur des Galliumarsenids und damit seine Halbleiter-Eigenschaften. Deshalb nutzt die Gruppe um Dr. Facsko im Ionenstrahlzentrum des HZDR die Möglichkeit, die Proben während des Ionenbeschusses zu heizen. Bei rund 400 Grad Celsius heilen die zerstörten Strukturen rasch wieder aus.

Ein weiterer Effekt sorgt nun dafür, dass Nano-Dünen auf der Halbleiter-Oberfläche entstehen. Die aufprallenden Ionen verschieben nicht nur die getroffenen Atome, sondern schlagen auch einzelne Atome ganz aus dem Kristall heraus. Da das flüchtige Arsen nicht an der Oberfläche gebunden bleibt, besteht die Oberfläche bald nur noch aus Gallium-Atomen.

Um die fehlenden Bindungen zu den Arsen-Atomen zu kompensieren, bilden sich Paare aus zwei Gallium-Atomen, die sich in langen Reihen anordnen. Schlägt der Ionenstrahl gleich daneben weitere Atome heraus, können die Gallium-Paare über die entstandene Stufe nicht hinunter rutschen, weil die Temperaturen dazu zu niedrig sind. So entstehen aus den langen Reihen von Gallium-Paaren nach einiger Zeit winzige Nano-Dünen, bei denen etliche lange Paar-Linien nebeneinander liegen.

Viele Experimente bei unterschiedlichen Temperaturen und umfangreiche Berechnungen waren nötig, um einerseits den kristallinen Zustand des Halbleiter-Materials zu erhalten und andererseits wohl-definierte Strukturen im Nano-Maßstab zu erzeugen. „Die von uns entwickelte Methode der inversen Epitaxie funktioniert für unterschiedliche Materialien, doch zunächst nur in der Grundlagenforschung. Da wir aber besonders niederenergetische Ionen verwenden, die einfach herzustellen sind, hoffen wir, dass wir einen Weg für die industrielle Umsetzung aufzeigen können. Die Industrie muss ähnliche Strukturen heute noch viel aufwändiger fabrizieren“, so Dr. Facsko vom HZDR.

Publikation: X. Ou, K.-H. Heinig, R.Hübner, J. Grenzer, X. Wang, M. Helm, J. Fassbender, S. Facsko: “Faceted nanostructure arrays with extreme regularity by self-assembly of vacancies”, in Nanoscale, Online-Publikation am 25.08.2015 (DOI: 10.1039/C5NR04297F)

Weitere Informationen:
Dr. Stefan Facsko
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel. +49 351 260-2987 | E-Mail: s.facsko@hzdr.de

Medienkontakt:
Christine Bohnet | Pressesprecherin
Tel. +49 351 260-2450 | E-Mail: c.bohnet@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden | www.hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR ist Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte (Dresden, Leipzig, Freiberg und Grenoble) und beschäftigt rund 1.100 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Weitere Informationen:

https://www.hzdr.de/presse/nanodunes

Dr. Christine Bohnet | Helmholtz-Zentrum Dresden-Rossendorf

Weitere Berichte zu: Atome Epitaxie Helmholtz-Zentrum Ionen Ionenstrahl Materie Nano-Strukturen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie