Nano-Antennen in höchster Präzision

Glatte Flächen, scharfe Kanten: Künstlerische Darstellung eines einkristallinen Goldplättchens, aus dem mit einem fein gebündelten Ionenstrahl verschiedene Nanostrukturen herausmodelliert wurden. Würzburger Physiker haben auf diese Weise optische Nano-Antennen in bislang nicht gekannter Präzision realisiert. Sie sind als paarweise angeordnete Quader zu erkennen. Eine der Antennen wird im Vordergrund mit weißem Licht angeregt und leuchtet in der Farbe ihrer Resonanzwellenlänge auf. Deutlich grobkörniger ist links die aufgedampfte Goldschicht. Dieses Ausgangsmaterial ergab bislang Nano-Antennen, die zehn Mal weniger effizient sind. Bild: Thorsten Feichtner

Nano-Antennen können – vergleichbar mit einem Brennglas, aber wesentlich effizienter – Licht sammeln und es auf extrem kleine Räume konzentrieren. Dadurch lässt sich die Energie, die im Licht steckt, effizienter nutzen. Anwendungsmöglichkeiten für derartige optische Antennen gibt es viele. Sie reichen von der Photovoltaik bis hin zu integrierten Schaltkreisen, die mit Licht statt mit Elektronen arbeiten.

Die Herstellung optischer Nano-Antennen allerdings ist knifflig. „Sie müssen um die 300 Nanometer lang sein und einen Spalt haben, der schmaler als zehn Nanometer ist – darin sammeln sie das Licht“, erklärt Professor Bert Hecht vom Physikalischen Institut der Universität Würzburg. Das sind unvorstellbar kleine Dimensionen: Ein Nanometer entspricht einem Milliardstel Meter. Nur in dieser Ausprägung können die Antennen das Licht überhaupt konzentrieren.

Warum ausgerechnet Gold als Baumaterial für die Antennen verwendet wird? „Weil es an der Luft stabil bleibt“, so Bert Hecht. Man könne auch Silber nehmen, denn daraus lassen sich Lichtantennen mit noch besseren Eigenschaften erzeugen. Aber Silber ist eben nicht beständig an Luft, es korrodiert.

Ergebnisse in „Nature Communications“ publiziert

„Bisher war es schwer, Nano-Antennen aus Gold mit der erforderlichen Präzision ohne Fehler herzustellen“, sagt Hecht. Doch sein Würzburger Team hat mit Forschern aus Dübendorf (Schweiz) und Mailand (Italien) eine Methode gefunden, mit der das geht. Erste Untersuchungen an den Antennen haben das große Potential der neuen Methode gezeigt. Die Ergebnisse sind im Online-Journal „Nature Communications“ publiziert.

Nachteil der bisher üblichen Herstellung von Nano-Antennen

Nano-Antennen für Licht wurden bisher so erzeugt: Auf ein Trägermaterial wurden mehrere Metallschichten aufgedampft. Aus diesem „Rohling“ ließen sich dann die gewünschten Formen herausarbeiten, ähnlich wie in der Bildhauerei.

Nachteil dabei: Die Ausgangsschichten bestehen aus vielen einzelnen kleinen Kristallen, was ihnen eine körnige Struktur gibt. Versucht man nun, mit einem fein gebündelten Ionenstrahl aus einer derart „groben“ Schicht glatte Strukturen mit Details im Nanometerbereich herauszuschneiden, ergibt das sehr unregelmäßige Formen, die nicht die gewünschte Funktion haben.

Goldplättchen aus einem einzigen Kristall

Die Physiker um Bert Hecht gingen darum einen anderen Weg. Über die Methode der chemischen Selbstorganisation gewannen sie Goldplättchen, die aus nur einem einzigen Goldkristall bestehen, also in sich keine Körnung aufweisen. Aus diesen Plättchen konnten die Forscher per Ionenstrahl Nanostrukturen modellieren, die durch ihre Präzision beeindrucken: Die Schnittränder sind flach wie eine einzige Schicht aus Goldatomen.

Licht wird zehn Mal besser konzentriert

Lichtantennen, die auf diese Weise hergestellt werden, konzentrieren das Licht in ihrem Spalt zehn Mal besser als herkömmliche Antennen. Mit der neuen Methode steht den Forschern jetzt der Weg offen, um großflächige, komplexere Strukturen verlässlich und ohne Fehler zu erzeugen. „Damit sind mögliche Anwendungen wie die Erzeugung künstlicher Lichtsammelkomplexe für die Photovoltaik oder die Entwicklung integrierter optischer Schaltkreise ein gutes Stück realistischer geworden“, freut sich Hecht.

Photovoltaik-Anwendungen noch fern

Steht der Menschheit bald eine neuartige, hoch effiziente Photovoltaik ins Haus? Vorerst nicht, dämpft der Würzburger Professor allzu hohe Erwartungen: „Wir stehen da noch ganz am Anfang. Erst einmal müssen wir grundsätzlich das Potenzial der optischen Nano-Antennen ausloten.“ Mit Gold als Baumaterial gehe das zurzeit am besten. Aber goldhaltige Solarzellen auf den Hausdächern werde es auch künftig sicher nicht geben.

Das Potenzial der Nano-Antennen ergründen die Würzburger Physiker in den kommenden Jahren bei einem Projekt, das von der Volkswagen-Stiftung (Hannover) gefördert wird – in deren Programm „Integration molekularer Komponenten in funktionale makroskopische Systeme“. Auch die Deutsche Forschungsgemeinschaft (DFG) unterstützt die Arbeiten in ihrem Schwerpunktprogramm 1391 „Ultrafast Nano-Optics“.

“Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry”, J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J.C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser & B. Hecht, Nature Communications, online erschienen am 21.12.2010, DOI 10.1038/ncomms1143

Kontakt

Prof. Dr. Bert Hecht, Physikalisches Institut, Universität Würzburg, T (0931) 31-85863, hecht@physik.uni-wuerzburg.de

Media Contact

Robert Emmerich Uni Würzburg

Weitere Informationen:

http://www.uni-wuerzburg.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer