Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nächster wichtiger Schritt zum Quantencomputer

24.03.2015

Physikern der Universitäten Bonn und Cambridge ist es gelungen, zwei komplett unterschiedliche Quantensysteme miteinander zu koppeln. Damit sind sie auf dem Weg zum Quantencomputer einen wichtigen Schritt vorangekommen. Die Forscher setzten dabei auf eine Methode, die in der Quantenwelt ebenso gut zu funktionieren scheint wie bei uns Menschen: Teamarbeit. Die Ergebnisse sind nun in den „Physical Review Letters” veröffentlicht.

Große Herausforderungen nimmt man am besten gemeinsam in Angriff. In einem Team kann jedes Mitglied seine individuellen Stärken einbringen – zum Nutzen aller Beteiligten. Da ist zum Beispiel der schusselige Wissenschaftler, der zwar brillante Ideen hat, diese aber schnell wieder vergisst.

Er benötigt die Hilfe seines gewissenhaften Kollegen, der emsig alles notiert, um den Wirrkopf später daran erinnern zu können. Ganz ähnlich ist es in der Welt der Quanten. Dort übernehmen die so genannten Quantendots (abgekürzt: qDots) die Rolle des vergesslichen Genies.

Quantendots sind zwar unschlagbar schnell, wenn es um die Verarbeitung von Quanteninformationen geht. Leider vergessen sie das Ergebnis dieser Berechnung aber ebenso rasch wieder – zu rasch, um in einem Quantencomputer wirklich nützlich zu sein.

Geladene Atome, Ionen genannt, haben dagegen ein exzellentes Gedächtnis: Sie können Quanteninformationen für viele Minuten speichern. In der Quantenwelt ist das eine Ewigkeit. Zum schnellen Rechnen eignen sie sich bisher allerdings weniger, da die internen Prozesse vergleichsweise langsam ablaufen. Die Physiker aus Bonn und Cambridge haben daher beide Bausteine, qDots und Ionen, zur Teamarbeit verdonnert. Experten sprechen auch von einem Hybrid-System, weil es zwei komplett unterschiedliche Quantensysteme miteinander kombiniert.

Schusselige qDots

qDots gelten bei der Entwicklung von Quantencomputern als große Hoffnungsträger. Im Prinzip sind sie extrem miniaturisierte Elektronenspeicher. qDots lassen sich mit denselben Techniken wie normale Computerchips herstellen. Dazu muss man die Strukturen auf den Chips nur so verkleinern, bis sie nur noch ein einziges Elektron fassen (im herkömmlichen PC sind es dagegen 10 bis 100 Elektronen).

Das in einem qDot gespeicherte Elektron kann Zustände annehmen, wie sie durch die Quantentheorie vorhergesagt werden. Allerdings sind diese sehr kurzlebig: Sie zerfallen binnen weniger Picosekunden (zur Illustration: das Licht legt in einer Picosekunde lediglich eine Strecke von 0,3 Millimetern zurück).

Bei diesem Zerfall entsteht ein kleiner Lichtblitz: ein Photon. Photonen sind Wellenpakete, die in einer festgelegten Ebene schwingen – der Polarisationsrichtung. Der Zustand des qDots bestimmt, welche Polarisationsrichtung das Photon hat. „Wir haben das Photon genutzt, um damit ein Ion anzuregen“, erläutert Prof. Dr. Michael Köhl vom Physikalischen Institut der Universität Bonn. „Dabei haben wir gespeichert, welche Polarisationsrichtung das Photon hatte.“

Gewissenhafte Ionen

Dazu brachten die Forscher eine dünne Glasfaser an dem qDot an. Über diese Faser transportierten sie das Photon zum viele Meter entfernten Ion. Ganz ähnlich arbeiten Glasfasernetzwerke, wie sie in der Telekommunikation eingesetzt werden. Um die Informationsübertragung möglichst effizient zu machen, hatten sie das Ion zwischen zwei Spiegel gesperrt. Die Spiegel warfen das Photon wie einen Ping-Pong-Ball hin und her, bis es vom Ion absorbiert wurde.

„Durch Beschuss mit einem Laserstrahl konnten wir das so angeregte Ion auslesen“, erklärt Prof. Köhl. „Wir konnten dabei messen, welche Polarisationsrichtung das zuvor absorbierte Photon hatte.“ Der Zustand des qDots kann also gewissermaßen im Ion konserviert werden – theoretisch gelingt das für viele Minuten.

Der Erfolg ist ein bedeutender Schritt auf dem noch langen und steinigen Weg zum Quantencomputer. Langfristig erhoffen sich Forscher rund um den Globus wahre Wunderdinge von diesem neuen Rechnertypus: Bestimmte Aufgaben wie die Zerlegung großer Zahlen in ihre Faktoren sollte er spielend bewältigen können. Herkömmliche Computer beißen sich daran dagegen die Zähne aus. Seine Talente entfaltet der Quantencomputer allerdings nur bei derartigen Spezialaufgaben: Bei den normalen Grundrechenarten ist er erbärmlich langsam.

Publikation: H. M. Meyer, R. Stockill, M. Steiner, C. Le Gall, C. Matthiesen, E. Clarke, A. Ludwig, J. Reichel, M. Atatüre, M. Köhl: Direct photonic coupling of a semiconductor quantum dot and a trapped ion; Physical Review Letters

Kontakt für die Medien:

Prof. Dr. Michael Köhl
Physikalisches Institut
der Universität Bonn
Tel. 0228/734899
E-Mail: michael.koehl@uni-bonn.de

Weitere Informationen:

http://dx.doi.org/10.1103/PhysRevLett.114.123001 Veröffentlichung im Internet

Johannes Seiler | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie