Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nachgewiesen: Ein neues Elementarteilchen - Theoretische Voraussagen der RUB-Physiker bestätigt

21.01.2009
Den Nachweis für ein neues Elementarteilchen haben Prof. Dr. Maxim V. Polyakov (Theoretische Hadronenphysik, RUB) und Prof. Dr. Viatcheslav Kuznetsov (Kyungpook Universität, Korea) erbracht: Das neue Teilchen N*(1685) (sprich N star) stellt einen angeregten Zustand des Nukleons (Protons oder Neutrons) dar, auch Resonanzanregung genannt.

Das Studium dieser Resonanzanregungen liefert wertvolle Informationen zur inneren Struktur der Bausteine der Materie. "Das ist so wie wir durch Anregung der Saiten einer Geige ihre Qualität beurteilen können", vergleicht Prof. Maxim V. Polyakov. Die Forscher berichten in "Letters to Journal of Theoretical and Experimental Physics".

Zwei Besonderheiten zeichnen N* aus

Vor genau 40 Jahren erhielt Luis Walter Alvarez den Nobelpreis für "die Entdeckung einer großen Anzahl resonanter Zustände". Einen dieser Zustände, der theoretisch vor einigen Jahren vorausgesagt worden war, konnten die Forscher jetzt experimentell belegen, indem sie Atomkerne mit Photonen beschossen und sie so in Schwingungen versetzten. Zwei Besonderheiten unterscheiden N*(1685) von den bekannten Resonanzanregungen der Materie: Zum einen lebt N*(1685) etwa zehnmal länger. Im Fachjargon heißt es, N*(1685) habe eine ungewöhnlich schmale Breite, was allerdings auch hohe Anforderungen an die Experimentiergenauigkeit zur Folge hat: Man muss viel genauer "zielen", um diese Resonanzanregung zu treffen. Die andere Besonderheit ist, dass N*(1685) bei Beschuss sehr viel leichter aus dem Neutron als aus dem Proton hervorgeht. In die üblichen baryonischen Resonanzzustände dagegen werden Neutronen und Protonen gleich leicht versetzt.

Fünf oder mehr Quarks sind nötig

Die Anregung zur experimentellen Suche nach N* gaben theoretische Untersuchungen, denen neue Vorstellungen über die Struktur der Atomkernbausteine zugrunde liegen. Laut dieser Vorstellung können die Elementarteilchen als sog. Solitonen, also nicht lineare solitäre Wellen, betrachtet werden. Diese Idee existiert seit 1962. Die neuen Entwicklungen dieser Betrachtungsweise eröffnen jetzt die Möglichkeiten, nicht nur den Grundzustand, sondern auch die angeregten Zustände des Nukleons zu beschreiben. Die Eigenschaften der Resonanzanregungen erfordern allerdings eine Beschreibung, die nicht nur auf den wohlbekannten drei Quarks beruht, sondern auch fünf- oder mehr-Quark Zustände oder dessen Superposition umfasst.

Umstrittener und berühmter Verwandter

N* gehört nach den theoretischen Rechnungen zu einer Gruppe von zehn Teilchen ähnlicher Struktur, zusammengefasst unter dem Begriff "Anti-Dekuplett" (Anti-Zehnling). Ein Bestandteil dieser Gruppe ist das weltberühmte, aber immer noch umstrittene Theta+, ein exotisches Baryon, das nicht aus drei, sondern aus vier Quarks und einem Antiquark besteht. Vorausgesagt 1997 von Dimitri Diakonov, Victor Petrov und Maxim V. Polyakov, wurde es 2003 und 2004 in mehreren Experimenten identifiziert, dann aber in ebenso vielen nicht gefunden. Jetzt ist eine druckfrische Arbeit einer Japanischen Gruppe um Takashi Nakano erschienen, die eine neue und überzeugende Evidenz für die Existenz von Theta+ liefert und dabei indirekt auch die Strukturüberlegungen zu N*(1685) unterstützt. "Auf jeden Fall liegt bei N*(1685) ein Teilchen vor, dessen Zerfallsbreite wie beim Theta+ ganz wesentlich kleiner ist als die aller anderen baryonischen Teilchen", so Prof. Dr. Klaus Goeke vom Institut für Theoretische Physik der RUB. "Wenn sich das bestätigt, haben wir eine neue und ganz besondere Teilchensorte im Zoo der Elementarteilchen."

Vorhersagen vor fünf Jahren

Vor fünf Jahren wurden Teilchen der N* Sorte u.a. von Maxim V. Polyakov vorausgesagt, und zwar genau mit den erwähnten besonderen Eigenschaften. Experimentelle Daten, die man mit einem solchen Teilchen weitgehend erklären kann, wurden 2007 von der Kollaboration GRAAL publiziert und kürzlich durch das Experiment ELSA/TAPS am Bonner Elektronenbeschleuniger ELSA bestätigt. Hierbei wurden Photonen auf Nukleonen geschossen, wodurch das N* erzeugt wurde, das dann nachweislich in ein Eta-Meson (instabiles Teilchen aus einem Quark und einem Antiquark) und ein Nukleon zerfiel. Die Bochumer Theoretiker, insbesondere Maxim V. Polyakov, haben die Auswertung dieser Experimente teilweise im Rahmen des Transregio-Sonderforschungsbereichs (Bonn, Bochum, Gießen) begleitet.

Titelaufnahme

V. Kuznetsov, M.V. Polyakov: New Narrow Nucleon N*(1685). In: JETP Letters, 2008, Vol. 88, No. 6, pp 347-350, DOI: 10.1134/S002136400818001X

Weitere Informationen

Prof. Dr. Maxim V. Polyakov, Prof. Dr. Klaus Goeke, Institut für Theoretische Physik II der Ruhr-Universität Bochum, 44780 Bochum, Tel: 0234/32-23707, E-Mail: klaus.goeke@ruhr-uni-bochum.de, maxim.polyakov@tp2.ruhr-uni-bochum.de, Internet: http://www.tp2.ruhr-uni-bochum.de

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.tp2.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise