Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mustermacher auf einer Nano-Insel

12.02.2010
Das Interferenzmuster, das Elektronen einer Nanostruktur erzeugen, hängt von ihrer Spinorientierung ab

Einsperren hilft - nicht nur, wenn Verbrecher ihre wohlverdiente Strafe erhalten sollen, sondern auch in der Physik: Indem sie Elektronen auf einen engen Raum begrenzten, konnten die Forscher um Dirk Sander, Valeri Stepanyuk und Jürgen Kirschner vom Max-Planck-Institut für Mikrostrukturphysik in Halle für die Elektronen und ihre Eigendrehimpulse ("Spins") grundlegende quantenphysikalische Phänomene demonstrieren.

Aber ihre Arbeit geht über Grundlagenforschung hinaus: Sie eröffnet die Möglichkeit, die Spinpolarisation auf einer Nanometerskala zu manipulieren. Das ist für Entwicklungen der Spintronik äußerst interessant, also der Informationsverarbeitung, die zusätzlich zur Ladung auch den Spin von Elektronen ausnutzt und dadurch kleiner, schneller und sparsamer ist. Die Ergebnisse der Physiker aus Halle sind in der aktuellen Ausgabe des Fachmagazins "Science" veröffentlicht. (Science, 12. Februar 2010)

Der enge Raum - das ist für die Forscher eine dreieckige Kobalt-Insel auf einem Kupferkristall: Die Insel ist nur zwei Atomlagen dick und hat eine Kantenlänge von 12 Nanometern, besteht somit gerade mal aus ca. 10 000 Kobaltatomen. Kupfer und Kobalt unterscheiden sich hinsichtlich ihrer elektronischen Struktur. Insbesondere ist Kupfer nichtmagnetisch, Kobalt hingegen magnetisch. Der Inselrand ist eine elektronische Barriere, die Elektronen sind also auf der Insel eingesperrt.

Untersucht wird die Insel mit der magnetischen Spitze eines Rastertunnelmikroskops (RTM). Die Spitze brigen die Forscher sehr nahe an die Insel gebracht. Dann tunneln Elektronen von der Spitze in die Insel. Gemessen wird der Tunnelstrom in Abhängigkeit von der angelegten Spannung zwischen Spitze und Insel. So ermitteln die Physiker den differentiellen elektrischen Leitwert (der Kehrwert des elektrischen Widerstands).

Der besondere Clou des RTM in Halle: Die Messungen werden in Magnetfeldern gemacht, die einige 10.000 Mal stärker als das Erdmagnetfeld sind. So können die Forscher zwei verschiedene magnetische Konfigurationen hergestellen und untersuchen: Die Elektronen-Spins der RTM-Spitze und die der Insel, die für die Magnetisierung verantwortlich sind, weisen in einem Fall in die gleiche, im anderen Fall in die entgegengesetzte Richtung - man spricht von paralleler beziehungsweise antiparalleler Konfiguration. Die Wissenschaftler aus Halle haben in beiden Konfigurationen die Oberfläche der Insel abgerastert und den Tunnelstrom gemessen. So erstellten sie sowohl für die parallele als auch für die antiparallele Konfiguration eine Landkarte, die den Leitwert in Abhängigkeit von der Position auf der Insel darstellt.

Dadurch, dass die Elektronen auf der Insel eingesperrt sind, zeigt die Landkarte der Leitwerte sowohl für die parallele als auch für die antiparallele Konfiguration ein räumliches Muster: Gemäß ihrem Wellencharakter bilden die Elektronen auf der Insel stehende Wellen aus. Allerdings - und das ist das Interessante an den Messergebnissen - wirkt sich das Einsperren in paralleler Konfiguration anders aus als in antiparalleler Konfiguration: Eine dritte Landkarte, in der die Wissenschaftler eintrugen, um wie viel die beiden Werte voneinander abwichen zeigte ebenfalls ein räumliches Muster. Mit anderen Worten: Auch die Spinpolarisation, also das Vorhandensein einer Vorzugsrichtung für den Elektronenspin, ist in der dreieckigen magnetischen Nanostruktur räumlich moduliert.

Untermauern konnten die Wissenschaftler ihre Interpretation durch so genannte ab-initio-Berechnungen. Sie haben damit erstmals gezeigt, dass die Interferenz der Elektronen in der Nanostruktur vom Elektronen-Spin abhängt.

Originalveröffentlichung:

Hirofumi Oka, Pavel Ignatiev, Sebastian Wedekind, Guillemin Rodary, Larissa Niebergall, Valeri Stepanyuk, Jürgen Kirschner
Spin-Dependent Quantum Interference
Science, 12. Februar 2010
Weitere Informationen erhalten Sie von:
Dr. Dirk Sander
Max-Planck-Institut für Mikrostrukturphysik, Halle
Tel.: +49 345 5582-660
E-Mail: sander@mpi-halle.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpi-halle.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik