Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mustermacher auf einer Nano-Insel

12.02.2010
Das Interferenzmuster, das Elektronen einer Nanostruktur erzeugen, hängt von ihrer Spinorientierung ab

Einsperren hilft - nicht nur, wenn Verbrecher ihre wohlverdiente Strafe erhalten sollen, sondern auch in der Physik: Indem sie Elektronen auf einen engen Raum begrenzten, konnten die Forscher um Dirk Sander, Valeri Stepanyuk und Jürgen Kirschner vom Max-Planck-Institut für Mikrostrukturphysik in Halle für die Elektronen und ihre Eigendrehimpulse ("Spins") grundlegende quantenphysikalische Phänomene demonstrieren.

Aber ihre Arbeit geht über Grundlagenforschung hinaus: Sie eröffnet die Möglichkeit, die Spinpolarisation auf einer Nanometerskala zu manipulieren. Das ist für Entwicklungen der Spintronik äußerst interessant, also der Informationsverarbeitung, die zusätzlich zur Ladung auch den Spin von Elektronen ausnutzt und dadurch kleiner, schneller und sparsamer ist. Die Ergebnisse der Physiker aus Halle sind in der aktuellen Ausgabe des Fachmagazins "Science" veröffentlicht. (Science, 12. Februar 2010)

Der enge Raum - das ist für die Forscher eine dreieckige Kobalt-Insel auf einem Kupferkristall: Die Insel ist nur zwei Atomlagen dick und hat eine Kantenlänge von 12 Nanometern, besteht somit gerade mal aus ca. 10 000 Kobaltatomen. Kupfer und Kobalt unterscheiden sich hinsichtlich ihrer elektronischen Struktur. Insbesondere ist Kupfer nichtmagnetisch, Kobalt hingegen magnetisch. Der Inselrand ist eine elektronische Barriere, die Elektronen sind also auf der Insel eingesperrt.

Untersucht wird die Insel mit der magnetischen Spitze eines Rastertunnelmikroskops (RTM). Die Spitze brigen die Forscher sehr nahe an die Insel gebracht. Dann tunneln Elektronen von der Spitze in die Insel. Gemessen wird der Tunnelstrom in Abhängigkeit von der angelegten Spannung zwischen Spitze und Insel. So ermitteln die Physiker den differentiellen elektrischen Leitwert (der Kehrwert des elektrischen Widerstands).

Der besondere Clou des RTM in Halle: Die Messungen werden in Magnetfeldern gemacht, die einige 10.000 Mal stärker als das Erdmagnetfeld sind. So können die Forscher zwei verschiedene magnetische Konfigurationen hergestellen und untersuchen: Die Elektronen-Spins der RTM-Spitze und die der Insel, die für die Magnetisierung verantwortlich sind, weisen in einem Fall in die gleiche, im anderen Fall in die entgegengesetzte Richtung - man spricht von paralleler beziehungsweise antiparalleler Konfiguration. Die Wissenschaftler aus Halle haben in beiden Konfigurationen die Oberfläche der Insel abgerastert und den Tunnelstrom gemessen. So erstellten sie sowohl für die parallele als auch für die antiparallele Konfiguration eine Landkarte, die den Leitwert in Abhängigkeit von der Position auf der Insel darstellt.

Dadurch, dass die Elektronen auf der Insel eingesperrt sind, zeigt die Landkarte der Leitwerte sowohl für die parallele als auch für die antiparallele Konfiguration ein räumliches Muster: Gemäß ihrem Wellencharakter bilden die Elektronen auf der Insel stehende Wellen aus. Allerdings - und das ist das Interessante an den Messergebnissen - wirkt sich das Einsperren in paralleler Konfiguration anders aus als in antiparalleler Konfiguration: Eine dritte Landkarte, in der die Wissenschaftler eintrugen, um wie viel die beiden Werte voneinander abwichen zeigte ebenfalls ein räumliches Muster. Mit anderen Worten: Auch die Spinpolarisation, also das Vorhandensein einer Vorzugsrichtung für den Elektronenspin, ist in der dreieckigen magnetischen Nanostruktur räumlich moduliert.

Untermauern konnten die Wissenschaftler ihre Interpretation durch so genannte ab-initio-Berechnungen. Sie haben damit erstmals gezeigt, dass die Interferenz der Elektronen in der Nanostruktur vom Elektronen-Spin abhängt.

Originalveröffentlichung:

Hirofumi Oka, Pavel Ignatiev, Sebastian Wedekind, Guillemin Rodary, Larissa Niebergall, Valeri Stepanyuk, Jürgen Kirschner
Spin-Dependent Quantum Interference
Science, 12. Februar 2010
Weitere Informationen erhalten Sie von:
Dr. Dirk Sander
Max-Planck-Institut für Mikrostrukturphysik, Halle
Tel.: +49 345 5582-660
E-Mail: sander@mpi-halle.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpi-halle.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Matrix-Theorie als Ursprung von Raumzeit und Kosmologie
23.05.2018 | Universität Wien

nachricht Rotierende Rugbybälle unter den massereichsten Galaxien
23.05.2018 | Leibniz-Institut für Astrophysik Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Im Focus: Achema 2018: Neues Kamerasystem überwacht Destillation und hilft beim Energiesparen

Um chemische Gemische in ihre Einzelbestandteile aufzutrennen, ist in der Industrie die energieaufwendige Destillation gängig, etwa bei der Raffinerie von Rohöl. Forscher der Technischen Universität Kaiserslautern (TUK) entwickeln ein Kamerasystem, das diesen Prozess überwacht. Dabei misst es, ob es zu einer starken Tropfenbildung kommt, was sich negativ auf die Trennung der Komponenten auswirken kann. Die Technik könnte hier künftig automatisch gegensteuern, wenn sich Messwerte ändern. So ließe sich auch Energie einsparen. Auf der Prozesstechnik-Messe Achema in Frankfurt stellen sie die Technik vom 11. bis 15. Juni am Forschungsstand des Landes Rheinland-Pfalz (Halle 9.2, Stand A86a) vor.

Bei der Destillation werden Flüssigkeiten durch Verdampfen und darauffolgende Kondensation des Dampfes in ihre Bestandteile getrennt. Ein bekanntes Beispiel...

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rotierende Rugbybälle unter den massereichsten Galaxien

23.05.2018 | Physik Astronomie

Invasive Quallen: Strömungen als Ausbreitungsmotor

23.05.2018 | Ökologie Umwelt- Naturschutz

Matrix-Theorie als Ursprung von Raumzeit und Kosmologie

23.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics