Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MRAM speichern Daten ohne Strom – und jetzt auch extrem schnell

08.03.2011
Patentierte PTB-Erfindung löst das Problem des „magnetischen Klingelns“

Die wichtigsten neuen Bausteine im Markt der Computer-Speicherchips heißen MRAM (magnetische „Random Access Memories“). Wie der bekannte USB-Stick speichern sie Informationen auch im stromlosen Zustand, aber MRAM bieten darüber hinaus kurze Zugriffszeiten und unbegrenzte Beschreibbarkeit.


Elektronenmikroskopische Aufnahme einer MRAM-Speicherzelle (Abb.: PTB)

Kommerzielle MRAM sind seit 2005 auf dem Markt. Allerdings sind sie noch langsamer als ihre Konkurrenten unter den flüchtigen Speichermedien. Eine Erfindung aus der Physikalisch-Technischen Bundesanstalt (PTB) ändert dies: Eine spezielle Chip-Beschaltung, verbunden mit einer dynamischen Ansteuerung des Bauelements, senkt die Ansprechzeit von bisher 2 ns auf unter 500 ps.

Dies entspricht einer Datenrate von 2 GBit (statt bisher etwa 400 MBit). Die Erfindung, die inzwischen Europa- und US-weit patentiert ist, ermöglicht darüber hinaus eine verringerte Leistungsaufnahme und thermische Belastung sowie eine geringere Bit-Fehler-Rate. Ein Industrieunternehmen, das solche MRAM in Lizenz fertigt, wird noch gesucht.

Die heute üblichen schnellen Computerspeicherchips wie DRAM und SRAM (Dynamic bzw. Static Random Access Memory) haben einen entscheidenden Nachteil: Bei Unterbrechung der Stromversorgung gehen die darauf gespeicherten Informationen unwiderruflich verloren. Abhilfe verspricht das MRAM. Darin wird die digitale Information nicht in Form elektrischer Ladung gespeichert, sondern über die magnetische Ausrichtung von Speicherzellen (Magnetspins). MRAM sind sehr universelle Speicherchips, denn sie erlauben neben der nichtflüchtigen Informationsspeicherung auch einen schnellen Zugriff, eine hohe Integrationsdichte sowie eine unbeschränkte Anzahl von Schreib- und Lesezyklen.

Doch die aktuellen MRAM-Modelle sind noch nicht schnell genug, um die besten Konkurrenten zu überflügeln. Die Zeit für die Programmierung eines magnetischen Bits beträgt etwa 2 ns. Wer dies beschleunigen will, stößt an Grenzen, die mit den grundlegenden physikalischen Eigenschaften der magnetischen Speicherzellen zu tun haben: Während des Programmiervorgangs wird nicht nur die gewünschte Speicherzelle magnetisch angeregt, sondern auch eine Vielzahl anderer Zellen. Diese Anregungen – das sogenannte magnetische Klingeln – sind nur schwach gedämpft, das Abklingen kann bis zu etwa 2 ns dauern, und währenddessen kann keine weitere Zelle des MRAM-Chips programmiert werden. So ist die maximale Taktrate von MRAM bisher auf etwa 400 MHz begrenzt. Alle Versuche, schneller zu werden, führten bisher zu nicht tolerierbaren Schreibfehlern. Die PTB-Wissenschaftler haben nun das MRAM-Design optimiert und die sogenannte ballistische Bitansteuerung, die ebenfalls in der PTB entwickelt wurde, integriert. Dabei werden die zur Programmierung dienenden Magnetpulse so geschickt gewählt, dass die anderen Zellen im MRAM so gut wie gar nicht magnetisch angeregt werden. Der Puls sorgt dafür, dass die Magnetisierung einer zu schaltenden Zelle eine halbe Präzessionsdrehung (180°) vollführt, während eine Zelle, deren Speicherzustand unverändert bleiben soll, eine volle Präzessionsdrehung (360°) beschreibt. In beiden Fällen ist die Magnetisierung nach Abklingen des Magnetpulses im Gleichgewichtszustand, und es treten keine magnetischen Anregungen mehr auf.

Diese optimale Bitansteuerung funktioniert auch mit ultrakurzen Schaltpulsen von unter 500 ps Dauer. Somit liegen die maximalen Taktraten des MRAM über 2 GHz. Zusätzlich ist es möglich, mehrere Bits gleichzeitig zu programmieren, wodurch die effektive Schreibrate pro Bit nochmals um über eine Größenordnung gesteigert werden könnte. Die Erfindung ermöglicht es, mit MRAM Taktraten zu erzielen, die mit denen der schnellsten flüchtigen Speicherbauteile konkurrieren können.

Ansprechpartner:
Dr. Bernhard Smandek, PTB-Technologietransfer,
Tel. (0531) 592-8303,
E-Mail: bernhard.smandek@ptb.de

Erika Schow | PTB
Weitere Informationen:
http://www.ptb.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Drei Generationen an Sternen unter einem Dach
27.07.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Physiker designen ultrascharfe Pulse
27.07.2017 | Universität Innsbruck

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie