MOTReMi – ein neuartiges Experiment zur Erforschung atomarer Kollisionen

Aufbau des MOTReMi. In der Mitte befindet sich die magneto-optische Falle mit ihren Magnetspulen und den 3 Paaren von Kühl-Laserstrahlen. Rechts und links davon sind die Ringelektroden für das elektrische Feld, die Detektoren und die Helmholtzspulen des Reaktionsmikroskops angeordnet. Die Anordnung ist gegen den Projektilstrahl im Speicherring geneigt. Die Flugbahnen der Lithiumionen und Elektronen sind rot bzw. grün eingezeichnet.<br><br>Grafik: MPIK<br>

Mit dem neu entwickelten Instrument lassen sich Reaktionen zwischen Ionen und Atomen in unübertroffener Genauigkeit und Auflösung studieren. Dies zeigen erste Stoßexperimente, bei denen Sauerstoffkerne auf lasergekühlte Lithiumatome geschossen wurden. (Phys. Rev. Lett., 14.09.2012 online)

Stöße von Ionen mit Atomen eröffnen einen Zugang zu Quantensystemen, die aus wenigen miteinander wechselwirkenden Teilchen bestehen. Solche fundamentalen Systeme sind auch heute noch eine Herausforderung für quantenmechanische Berechnungen. Mit der Entwicklung des Reaktionsmikroskops wurde es möglich, die Dynamik von Ion-Atom-Stößen unter die Lupe zu nehmen. Für möglichst genaue Messungen muss das Target kalt sein, was konventionell durch einen expandierenden Überschall-Gasstrahl realisiert wird. Bevorzugtes Target ist daher Helium; für Alkalimetalle wie Lithium ist diese Technik nicht geeignet. Deutlich tiefere Temperaturen und damit eine höhere Auflösung sind im Prinzip mit Laserkühlung zugänglich. Frühere Versuche waren jedoch nur teilweise erfolgreich.

Die neue Apparatur, MOTReMi genannt, kombiniert ein Reaktionsmikroskop (ReMi) mit einer magneto-optischen Falle (MOT) und ist in den Ionenspeicherring TSR des Max-Planck-Instituts für Kernphysik eingebaut. In einer MOT lassen sich Atome durch drei senkrecht zueinander angeordnete Paare von gegenläufigen Laserstrahlen kühlen und durch ein Magnetfeld einfangen. Beschießt man Atome mit einem Ionenstrahl, verlieren sie ein oder mehrere Elektronen. Ein Reaktionsmikroskop lenkt die Ionen und Elektronen mittels elektrischer und magnetischer Felder auf großflächige orts- und zeitempfindliche Detektoren. So können die Flugbahnen der Teilchen rekonstruiert und daraus ihre Impulsvektoren abgeleitet werden. Wenn dabei die Impulse aller beteiligten Teilchen bestimmt werden, wird dies als kinematisch vollständiges Experiment bezeichnet. Aufgrund der sehr unterschiedlichen Anforderungen an die Felder erscheinen diese beiden Techniken – MOT und ReMi – auf den ersten Blick jedoch unvereinbar.

Mit einigen Tricks gelang es den Physikern um Daniel Fischer aber, MOT und ReMi doch unter einen Hut zu bringen. So verwenden sie für die MOT besonders kleine Magnetspulen, die zudem koaxial zum ReMi angeordnet sind – anders als bei früheren Experimenten. Kompensationsspulen begrenzen das Magnetfeld auf den inneren Fallenbereich. So kann das Magnetfeld schnell ab- und wieder angeschaltet werden, ohne dass die gefangenen Atome aus der Falle entkommen. In diesem Zeitraum erfolgen die nun ungestörten Messungen mit dem ReMi. Damit die Laserkühlung auch bei abgeschaltetem Magnetfeld funktioniert, wird eine spezielle Polarisation der Kühl-Laserstrahlen entlang der Achse des ReMi eingesetzt.

Der TSR mit seinem Elektronenkühler kann kalte Ionenstrahlen mit hoher Intensität erzeugen. Darüber hinaus weisen diese Strahlen eine große Kohärenzlänge auf, eine Eigenschaft, die für den Vergleich der experimentellen Daten mit quantenmechanischen Modellen entscheidend sein kann.

In ersten Experimenten mit dem neuen Instrument hat die Gruppe um Daniel Fischer Lithiumatome in der MOT gefangen und mit Sauerstoffkernen beschossen. Mit ihren 3 Elektronen (2 fest gebundene innere und 1 Valenzelektron) lassen sich Lithiumatome quantentheoretisch in guter Näherung als Ein-Elektronen-Systeme behandeln. Gleichzeitig ist ihre Elektronenstruktur komplexer als die von Helium, dessen 2 fest gebundene „gleichberechtigte“ Elektronen aber schwierig zu berechnen sind. Dies macht Lithiumatome zu interessanten Targets für Stoßexperimente. In diesen Stößen werden die Lithiumatome auf 2 verschiedenen Reaktionswegen ionisiert: der erste ist die direkte Abgabe des Valenzelektrons, im anderen Prozess wird gleichzeitig eines der inneren Elektronen auf ein höheres Energieniveau angehoben. Durch die sehr niedrige Target-Temperatur im MOTReMi zeigen sich diese beiden Prozesse nun zum ersten Mal klar getrennt in den Daten, so dass sich neue Einblicke in ihre Dynamik ergeben.

Originalveröffentlichung:
Ion-lithium collision dynamics studied with a laser-cooled in-ring target
D. Fischer, D. Globig, J. Goullon, M. Grieser, R. Hubele, V.L.B. de Jesus, A. Kelkar, A. LaForge, H. Lindenblatt, D. Misra, B. Najjari, K. Schneider, M. Schulz, M. Sell, X. Wang
Phys. Rev. Lett. 109, 113202 (2012)

Kontakt:
Dr. Daniel Fischer
Tel.: +49 6221 516259
E-Mail: daniel.fischer@mpi-hd.mpg.de
Weitere Informationen:
Originalveröffentlichung:
http://prl.aps.org/abstract/PRL/v109/i11/e113202

Homepage der PRIOC-Gruppe am MPIK
http://www.mpi-hd.mpg.de/prioc/de/
Merkmale dieser Pressemitteilung:

Media Contact

Dr. Bernold Feuerstein Max-Planck-Institut

Weitere Informationen:

http://www.mpi-hd.mpg.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer