Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Saiten zum Schwingen gebracht und neu gestimmt

15.12.2015

Am Heidelberger MPI für Kernphysik ist Forschern in Zusammenarbeit mit der Universität Heidelberg erstmals die intensitätsabhängige Steuerung angeregter Zustände in gelösten Farbstoffmolekülen mittels Einstrahlung starker gepulster Laserfelder gelungen. Dabei lässt sich der zeitliche Verlauf der Antwort der beteiligten Elektronen auf die Anregung in einem ultrakurzen Laserpuls durch einen zeitlich dazu versetzten zweiten Lichtblitz kontrolliert verändern. Damit wurde gezeigt, dass die für den einfacheren Fall freier Atome bereits erfolgreiche Methode sich zur Steuerung des Absorptionsverhaltens von Licht auf komplexe Systeme in einem flüssigen Medium verallgemeinern lässt. [PNAS, 8.12.2015]

Jeder Klavierstimmer kennt das Problem: pro Ton gibt es bis zu drei Saiten, die auf genau die gleiche Tonhöhe gestimmt sein müssen, um einen reinen Klang zu erhalten. Verstimmungen machen sich durch für unser Gehör unangenehm klingende Überlagerungen leicht verschiedener Schwingungsfrequenzen bemerkbar.


Abb. 1: Absorptionssignal (l.) und Dipolantwort der Elektronenwolke (r.) für eine isolierte Resonanz in einem Atom (o.) und für mehrere Resonanzen in einem Molekül (u.).

Grafik: MPIK


Abb. 2: (a) Gemessenes Absorptionssignal des Farbstoffmoleküls IR144 als Funktion der Anregungsfrequenz und der Kontrollpuls-Intensität im Vergleich mit der theoretischen Modellierung (b).

Grafik: MPIK

Ähnlich verhalten sich die negativ geladenen Elektronenwolken in Atomen und Molekülen, die gegenüber den positiven Atomkernen hin und her schwingen können. Die Anregung erfolgt durch Licht als elektromagnetische Welle besonders stark dann, wenn die Lichtfrequenz einer dem atomaren System eigenen Schwingungsfrequenz entspricht, also Resonanz vorliegt.

Im obigen Bild entspricht dies bei einem Atom einem bestimmten Ton auf dem Klavier mit nur einer Saite. Bei einem Molekül können aber die einzelnen Atome gegeneinander schwingen und das ganze Molekül rotieren.

Statt einer hat man nun mehrere Saiten mit leicht verschiedener Eigenfrequenz. Diese lassen sich zwar nicht aufeinander abstimmen, da sie durch die Eigenschaften des Moleküls festgelegt sind, wohl aber kann die gegenseitige Überlagerung, also gleichsam die Klangfarbe des verstimmten Tons beeinflusst werden:

Schwingungen und Wellen sind nämlich neben ihrer Frequenz und Amplitude durch ihren zeitlichen Verlauf bezüglich eines vorgegebenen Zeitpunkts bestimmt – die sogenannte Phase. Diese wird in der Regel nicht direkt beobachtet, aber bei der Überlagerung mehrerer Schwingungen (Interferenz) sind Phasendifferenzen von entscheidender Bedeutung.

In früheren Arbeiten hat die Gruppe um Thomas Pfeifer am Heidelberger Max-Planck-Institut für Kernphysik (MPIK) in Heidelberg erfolgreich die Manipulation des zeitlichen Verlaufs einer Elektronenschwingung in einem Atom demonstriert. In Abhängigkeit von der Frequenz des Lasers ergibt sich für die Wahrscheinlichkeit der Schwingungsanregung, also die Stärke der Lichtabsorption, ein charakteristischer Verlauf um die Resonanz.

Dieser kann – je nach Phasenverschiebung der Elektronenschwingung – ein asymmetrisches, so genanntes Fano-Profil zeigen, das auch negative Ausschläge haben kann (Abb. 1 oben). Im Fall von Atomen können die einzelnen Resonanzen meist als voneinander unabhängig betrachtet werden. In Molekülen hingegen liegen sie dicht beieinander, so dass sie überlappen und prinzipiell nicht trennbar sind.

Die theoretische Beschreibung lässt sich aber verallgemeinern, nur dass jetzt die Gesamtheit aller überlappenden Resonanzen betrachtet werden muss. Beispielhaft ist in Abb. 1 das Verhalten von vier Resonanzen gezeigt: Deren individuelle Antworten auf die Laseranregung müssen unter Beachtung ihrer zeitlichen Verläufe und Einbeziehung der Phasenverschiebungen überlagert werden, um die Gesamtantwort zu berechnen.

Diese kann durchaus eine komplizierte Form mit zusätzlichen Strukturen (Maxima/Minima) aufweisen. Zur Manipulation der Phasen verwenden die Wissenschaftler wie im atomaren Fall einen zweiten Kontroll-Laserpuls, der zeitlich versetzt zum anregenden Laserpuls eingestrahlt wird. Die Kontrolle erfolgt über die Intensität dieses Pulses und die zeitliche Verschiebung.

Dabei kann zusätzlich ausgenutzt werden, dass nicht alle dicht beieinander liegenden Resonanzen gleich stark durch das Laserfeld als „Phasenschieber“ beeinflusst werden, was eine Adressierung bestimmter elektronischer Zustände erlauben könnte.

Zur experimentellen Untersuchung hat die Forschergruppe um Dr. Kristina Meyer mit Unterstützung der Gruppe von Prof. Marcus Motzkus (Universität Heidelberg) einen ähnlichen Aufbau wie in den vorigen Arbeiten verwendet. Sie teilen hierzu einen ultrakurz gepulsten Laserstrahl von 7 Femtosekunden (1 Femtosekunde = 10-15 s) Pulsdauer in zwei Teilstrahlen mit variablem Intensitätsverhältnis und variabler gegenseitiger Verzögerung auf, fokussieren diese auf die Probe und messen die Lichtabsorption.

Als Probe diente das Farbstoffmolekül IR144, gelöst in Methanol. Erstmals haben sie hier bei einem in flüssiger Lösung befindlichen Molekül die Phase von angeregten Zuständen in einem starken Laserfeld als Funktion von dessen Intensität durchgestimmt. „Dies ist von entscheidender Bedeutung, da chemische Reaktionen, deren gezielte Beeinflussung man sich erhofft, in der Regel in Lösungen, d. h. in einem flüssigen Medium, ablaufen“, erläutert Kristina Meyer.

Die gemessenen Absorptionsspektren als Funktion der Intensität des Kontrollpulses zeigen deutlich den Einfluss des Kontrollpulses (Abb. 2a): Das Absorptionsmaximum verschiebt sich zu höheren Frequenzen und es tritt ein zusätzliches Minimum auf. Zum Vergleich hat Kristina Meyer mit Unterstützung der Theoriegruppe von Prof. Andreas Dreuw (Universität Heidelberg) eine theoretische Modellierung vorgenommen (Abb. 2b). Hierzu hat sie vereinfacht 22 Resonanzen in gleichem gegenseitigem Abstand und gleicher Breite betrachtet, von denen vier signifikant an das Laserfeld koppeln. Trotz dieser Vereinfachung werden die Messungen durch die Rechnung gut wiedergegeben.

Mit dem neuen Experiment am Beispiel eines Farbstoffmoleküls konnten die Heidelberger Forscher zeigen, dass zeitaufgelöste Phasenkontrolle auf komplexe Systeme verallgemeinert werden kann und nun auf eine Vielzahl von Systemen anwendbar ist: von einzelnen Atomen im gasförmigen Zustand bis hin zu größeren Molekülen in ihrer „natürlichen“ Umgebung wie z. B. wässrigen Lösungen. Dies eröffnet neue Wege in die "Laserchemie", der Steuerung chemischer Reaktionen mit starken Laserfeldern.

Originalpublikation:

Signatures and control of strong-field dynamics in a complex system
Kristina Meyer, Zuoye Liu, Niklas Müller, Jan-Michael Mewes, Andreas Dreuw, Tiago Buckup, Marcus Motzkus and Thomas Pfeifer
Proceedings of the National Academy of Sciences of the United States of America, Vorabpublikation online 8. Dezember 2015; DOI: 10.1073/pnas.1509201112

Kontakt:

Dr. Kristina Meyer
MPI für Kernphysik
E-Mail: kristina.meyer@mpi-hd.mpg.de
Tel.: +49 6221 516-332

Prof. Dr. Thomas Pfeifer
MPI für Kernphysik
E-Mail: thomas.pfeifer@mpi-hd.mpg.de
Tel.: +49 6221 516-380

Weitere Informationen:

http://www.mpi-hd.mpg.de/mpi/pfeifer/qdc-interatto/ Seite der Gruppe INTERATTO am MPIK
http://www.mpi-hd.mpg.de/mpi/aktuelles/meldung/detail/ein-phasenschieber-fuer-at... „Ein Phasenschieber für Atome“
http://www.mpg.de/7243965/absorption_linienform_fano_lorentz „Die Spur der Zeit im optischen Spektrum“

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie