Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekülströme "bergauf"

16.07.2015

Leipziger Physiker beobachten spannende Effekte / Publikation in "Nature Communications"

Wenn man ein Stück Zucker in eine Tasse Kaffee gibt, rührt man gewöhnlich, um schneller zu erreichen, was ohnehin passiert: Die aufgelösten Zuckermoleküle breiten sich gleichmäßig aus. Das bedeutet, sie wandern in Richtung fallender Zuckerkonzentration, sozusagen "bergab".

Bei anderen gelösten Substanzen muss dies nicht immer der Fall sein. Von genau einer solchen Beobachtung, also von Molekülströmen in Richtung wachsender Konzentration ("bergauf"), berichten Physiker der Universität Leipzig in der jüngsten Ausgabe der renommierten Online-Fachzeitschrift "Nature Communications".

Bei ihren Untersuchungen betrachtete die Leipziger Forschergruppe unter der Leitung von Prof. Dr. Jörg Kärger Moleküle im Inneren nanoporöser Materialien. Dies sind Stoffe mit Porengrößen im Bereich der Größe der Moleküle. Das wird zum Beispiel bei ihrem Einsatz zur Stoffveredelung ausgenutzt.

Während man bei allen bisherigen Untersuchungen die Stoffaufnahme solcher Materialien immer nur über die Gesamtmenge der eingedrungenen Moleküle untersuchen konnte, gelang den Leipziger Forschern nun die Messung lokaler Konzentrationen und deren Zeitabhängigkeit. Sie benutzten hierzu das von ihnen entwickelte Verfahren des "Micro-Imaging".

"Die dabei erhältliche Information ist vergleichbar mit dem, was dem behandelnden Arzt heute die Methode der Magnetresonanz-Tomographie liefert", erläutert Prof. Dr. Jürgen Haase, der mit zum Forscherteam gehörte. "Auch hier geht es um die Verteilung von Molekülen. Allerdings sind die Anforderungen an die Zeit- und Ortsauflösung dabei nicht so groß, wie sie bei unseren Messungen im Inneren von Kristallen mit Durchmessern von wenigen Mikrometern gestellt werden mussten."

"Mit der Beobachtung der 'uphill-Diffusion', also der Ausbreitung von Molekülen 'bergauf', in Richtung höherer Konzentration, konnten wir erstmalig einem wichtigen Mechanismus auf die Spur kommen", sagt Jörg Kärger.

"Die sich im Material schneller ausbreitenden Moleküle können also vorübergehend an gewissen Orten höher konzentriert auftreten und damit andere Wirkungen entfalten, als wenn sich ein Gleichgewicht eingestellt hat. Dieser Effekt des 'overshooting', also des Über-das-Ziel-Hinausschießens, könnte viele Anwendungen haben, unter anderem in der Medizin. Das ist ein spannendes Thema aktueller Forschung."

Fachveröffentlichung in "Nature Communications":
"Uphill diffusion and overshooting in the adsorption of binary mixtures in nanoporous solids"
(16. Juli 2015, online im Laufe des Tages)
DOI: 10.1038/ncomms8697

Weitere Informationen:

Prof. Dr. Jörg Kärger
Institut für Experimentelle Physik I
Telefon: +49 341 97-32502
E-Mail: kaerger@physik.uni-leipzig.de
Web: www.uni-leipzig.de/~gfp/


Prof. Dr. Jürgen Haase
Institut für Experimentelle Physik II
Telefon: +49 341 97-32601
E-Mail: j.haase@physik.uni-leipzig.de
Web: research.uni-leipzig.de/mqf/cgi-bin/index.cgi

Carsten Heckmann | Universität Leipzig

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics