Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Moleküle einen Reifenabdruck hinterlassen - Neuer Ansatz soll molekulare Selbstorganisation optimieren

17.02.2010
Manche Moleküle können sich auf Oberflächen in spezifischen Mustern selbst anordnen. Diese Selbstorganisation spielt bei technischen Anwendungen eine Rolle, die auf funktionellen Oberflächenstrukturen beruhen.

Bislang konnten diese Prozesse aber kaum gesteuert oder vorhergesagt werden. Einem Forscherteam unter der Leitung der Physikerin Dr. Bianca Hermann vom "Center for NanoScience" (CeNS) der LMU München gelang hier nun, ein Durchbruch: Eine Kombination aus statistischer Physik und detaillierten Simulationen mit rastertunnelmikroskopischen Aufnahmen lieferte ein vereinfachtes Modell zur Vorhersage der Muster.

"Wir können nun in der Theorie eine Vielzahl von Mustern reproduzieren, die überraschend gut mit den experimentell beobachteten Mustern übereinstimmen", sagt Hermann. "Diesen Ansatz wollen wir nun auf andere Oberflächensymmetrien ausdehnen. Schon jetzt könnten viele Anwendungen in der molekularen Elektronik, Sensorik, Katalyse und Photovoltaik von unserem Modell profitieren. Denn wenn Oberflächenstrukturen besser vorhergesagt werden, können die molekularen Komponenten schon in der Synthese gezielter optimiert werden." (NanoLetters online, 16. Februar 2009)

Wenn die Natur ihr eigener Ingenieur ist, ordnen sich Moleküle selbst zu komplexen Strukturen an - als Voraussetzung für die Bildung von Membranen, Zellen und anderen molekularen Systemen. Dieses ressourcenschonende Konzept liefert aber auch in der molekularen Elektronik, Sensorik, Katalyse und Photovoltaik funktionale Oberflächenstrukturen. Bei deren Herstellung werden die molekularen Komponenten auf ein Trägermaterial, das Substrat, aufgebracht und finden dann selbst ihren Platz im angestrebten molekularen Netzwerk. Je nach Anwendung zeigen die Bausteine spezifische elektronische, katalytische, sensorische oder photovoltaische Eigenschaften. Die Optimierung dieser hochfunktionellen Molekülschichten hängt aber noch von "try and error" ab und ist deshalb anspruchsvoll und zeitaufwendig.

In der Zusammenarbeit der Arbeitsgruppen von Dr. Bianca Hermann, PD Dr. Thomas Franosch und Professor Erwin Frey im Exzellenzcluster "Nanosystems Initiative Munich" (NIM) gelang nun die Entwicklung eines vereinfachten Modells der molekularen Wechselwirkungen. Dieser Ansatz beruht auf statistischer Physik in einer sogenannten Monte-Carlo-Methodik und detaillierten Simulationen der molekularen Mechanik zusammen mit hochaufgelösten rastertunnelmikroskopischen Aufnahmen. Die Doktorandin Marta Balbás Gambra hat in diesem theoretischen Modell Hunderte von Molekülen am Computer zufällig ausgerichtet, um einen Anfangszustand zu simulieren. Diese schematischen Molekülkörper werden dann - in der Berechnung - energetisch angeregt, um Muster zu bilden.

So kann eine - im Vergleich zur Natur - außergewöhnlich große Vielzahl an Mustern erzeugt werden, die in hoher Übereinstimmung auch bei den Experimenten mit dem Rastertunnelmikroskop gefunden werden. "Wir haben sogar ein Muster zunächst theoretisch vorhergesagt und später mit dem Rastertunnelmikroskop nachgewiesen", berichtet der Doktorand Carsten Rohr. Nach der Thermodynamik der Physik streben alle Systeme danach, den energetisch günstigsten Zustand einzunehmen. Experimentell wurde gezeigt, dass sich die molekularen Muster ineinander umwandeln können - bis überwiegend nur eine Art "Reifenspurmuster" vorliegt. Dessen günstige energetische Bilanz wurde ebenfalls richtig mit dem "Monte-Carlo-Ansatz" vorhergesagt.

"Letztlich konnten wir zeigen, dass sehr elementare geometrische Eigenschaften der Moleküle diese Vielzahl an Mustern codieren", erklärt der Theoretiker Franosch. "Wir wollen unseren Ansatz nun auch auf andere Substrate, also Oberflächen anderer Symmetrie, ausdehnen. Bereits jetzt aber ist unser Modell ein wichtiges theoretisches Werkzeug, weil es funktionale Oberflächenstrukturen vorhersagen hilft. Damit können die Moleküle schon während der Synthese optimiert werden, um die gewünschten Eigenschaften zu zeigen," erläutert Hermann. Die Physikerinnen und Physiker des Teams, die in unterschiedlichen Fachgebieten arbeiten und ihr Fachwissen hier zusammenführen konnten, sehen Anwendungen im Bereich der molekularen Elektronik, Sensorik, Katalyse und Photovoltaik, auch bei anderen molekularen Wechselwirkungen und bei nur teilweise bedeckten Oberflächen. (suwe)

Publikation:
"Molecular Jigsaw: Pattern Diversity Encoded by Elementary Geometrical Features",
C. Rohr, M. Balbás Gambra, K. Gruber, E. C. Constable, E. Frey, T. Franosch, and B. A. Hermann
NanoLetters online, 16. Februar 2009
DOI: 10.1021/nl903225j
Ansprechpartner:
Dr. Bianca Hermann
Exzellenzcluster "Nanosystems Initiative Munich" (NIM) und "Center for NanoScience" (CeNS) der LMU München sowie Walther-Meissner-Institut der Bayerischen Akademie der Wissenschaften
Tel.: +49-89-289 14258
Fax: +49-89-289 14206
E-mail: b.hermann@cens.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.wmi.badw-muenchen.de/spm/
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Freie Elektronen in Sonnen-Protuberanzen untersucht
25.07.2017 | Georg-August-Universität Göttingen

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie