Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Moleküle einen Reifenabdruck hinterlassen - Neuer Ansatz soll molekulare Selbstorganisation optimieren

17.02.2010
Manche Moleküle können sich auf Oberflächen in spezifischen Mustern selbst anordnen. Diese Selbstorganisation spielt bei technischen Anwendungen eine Rolle, die auf funktionellen Oberflächenstrukturen beruhen.

Bislang konnten diese Prozesse aber kaum gesteuert oder vorhergesagt werden. Einem Forscherteam unter der Leitung der Physikerin Dr. Bianca Hermann vom "Center for NanoScience" (CeNS) der LMU München gelang hier nun, ein Durchbruch: Eine Kombination aus statistischer Physik und detaillierten Simulationen mit rastertunnelmikroskopischen Aufnahmen lieferte ein vereinfachtes Modell zur Vorhersage der Muster.

"Wir können nun in der Theorie eine Vielzahl von Mustern reproduzieren, die überraschend gut mit den experimentell beobachteten Mustern übereinstimmen", sagt Hermann. "Diesen Ansatz wollen wir nun auf andere Oberflächensymmetrien ausdehnen. Schon jetzt könnten viele Anwendungen in der molekularen Elektronik, Sensorik, Katalyse und Photovoltaik von unserem Modell profitieren. Denn wenn Oberflächenstrukturen besser vorhergesagt werden, können die molekularen Komponenten schon in der Synthese gezielter optimiert werden." (NanoLetters online, 16. Februar 2009)

Wenn die Natur ihr eigener Ingenieur ist, ordnen sich Moleküle selbst zu komplexen Strukturen an - als Voraussetzung für die Bildung von Membranen, Zellen und anderen molekularen Systemen. Dieses ressourcenschonende Konzept liefert aber auch in der molekularen Elektronik, Sensorik, Katalyse und Photovoltaik funktionale Oberflächenstrukturen. Bei deren Herstellung werden die molekularen Komponenten auf ein Trägermaterial, das Substrat, aufgebracht und finden dann selbst ihren Platz im angestrebten molekularen Netzwerk. Je nach Anwendung zeigen die Bausteine spezifische elektronische, katalytische, sensorische oder photovoltaische Eigenschaften. Die Optimierung dieser hochfunktionellen Molekülschichten hängt aber noch von "try and error" ab und ist deshalb anspruchsvoll und zeitaufwendig.

In der Zusammenarbeit der Arbeitsgruppen von Dr. Bianca Hermann, PD Dr. Thomas Franosch und Professor Erwin Frey im Exzellenzcluster "Nanosystems Initiative Munich" (NIM) gelang nun die Entwicklung eines vereinfachten Modells der molekularen Wechselwirkungen. Dieser Ansatz beruht auf statistischer Physik in einer sogenannten Monte-Carlo-Methodik und detaillierten Simulationen der molekularen Mechanik zusammen mit hochaufgelösten rastertunnelmikroskopischen Aufnahmen. Die Doktorandin Marta Balbás Gambra hat in diesem theoretischen Modell Hunderte von Molekülen am Computer zufällig ausgerichtet, um einen Anfangszustand zu simulieren. Diese schematischen Molekülkörper werden dann - in der Berechnung - energetisch angeregt, um Muster zu bilden.

So kann eine - im Vergleich zur Natur - außergewöhnlich große Vielzahl an Mustern erzeugt werden, die in hoher Übereinstimmung auch bei den Experimenten mit dem Rastertunnelmikroskop gefunden werden. "Wir haben sogar ein Muster zunächst theoretisch vorhergesagt und später mit dem Rastertunnelmikroskop nachgewiesen", berichtet der Doktorand Carsten Rohr. Nach der Thermodynamik der Physik streben alle Systeme danach, den energetisch günstigsten Zustand einzunehmen. Experimentell wurde gezeigt, dass sich die molekularen Muster ineinander umwandeln können - bis überwiegend nur eine Art "Reifenspurmuster" vorliegt. Dessen günstige energetische Bilanz wurde ebenfalls richtig mit dem "Monte-Carlo-Ansatz" vorhergesagt.

"Letztlich konnten wir zeigen, dass sehr elementare geometrische Eigenschaften der Moleküle diese Vielzahl an Mustern codieren", erklärt der Theoretiker Franosch. "Wir wollen unseren Ansatz nun auch auf andere Substrate, also Oberflächen anderer Symmetrie, ausdehnen. Bereits jetzt aber ist unser Modell ein wichtiges theoretisches Werkzeug, weil es funktionale Oberflächenstrukturen vorhersagen hilft. Damit können die Moleküle schon während der Synthese optimiert werden, um die gewünschten Eigenschaften zu zeigen," erläutert Hermann. Die Physikerinnen und Physiker des Teams, die in unterschiedlichen Fachgebieten arbeiten und ihr Fachwissen hier zusammenführen konnten, sehen Anwendungen im Bereich der molekularen Elektronik, Sensorik, Katalyse und Photovoltaik, auch bei anderen molekularen Wechselwirkungen und bei nur teilweise bedeckten Oberflächen. (suwe)

Publikation:
"Molecular Jigsaw: Pattern Diversity Encoded by Elementary Geometrical Features",
C. Rohr, M. Balbás Gambra, K. Gruber, E. C. Constable, E. Frey, T. Franosch, and B. A. Hermann
NanoLetters online, 16. Februar 2009
DOI: 10.1021/nl903225j
Ansprechpartner:
Dr. Bianca Hermann
Exzellenzcluster "Nanosystems Initiative Munich" (NIM) und "Center for NanoScience" (CeNS) der LMU München sowie Walther-Meissner-Institut der Bayerischen Akademie der Wissenschaften
Tel.: +49-89-289 14258
Fax: +49-89-289 14206
E-mail: b.hermann@cens.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.wmi.badw-muenchen.de/spm/
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau