Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Molekül-Selfie“ enthüllt den Aufbruch einer chemischen Bindung

21.10.2016

Wissenschaftlern des Institute of Photonic Sciences (Barcelona) ist es gelungen, die Position aller Atome eines Moleküls zu verfolgen während der Aufbruch einer der chemischen Bindungen ein einzelnes Proton freisetzt. Hierzu wurde ein am Heidelberger Max-Planck-Institut für Kernphysik entwickeltes Reaktionsmikroskop verwendet [Science, 21. Oktober 2016].

Man stelle sich vor, die einzelnen Atome eines Moleküls ließen sich während einer chemischen Reaktion beobachten: Wie sie sich umlagern, um eine neue Substanz zu bilden oder wie Bausteine der DNS sich bewegen und vervielfältigt werden. Diese Fähigkeit würde bisher unerreichte Einsichten bieten, um diese Prozesse besser zu verstehen und möglicherweise zu kontrollieren.


Schematische Darstellung des Aufbruchs einer molekularen Bindung in Acetylen (C2H2).

Grafik: ICFO/Scixel.

Die simple Idee, den Aufbruch oder die Umwandlung von Molekülen während einer chemischen Reaktion zu beobachten, war bisher unerreichbar, denn sie setzt voraus, alle Atome, die das Molekül bilden, zu verfolgen – und dies mit subatomarer räumlicher Auflösung innerhalb weniger Femtosekunden (= ein Millionstel einer Milliardstel Sekunde). Daher klangen derartige „Schnappschüsse“ einer molekularen Reaktion mit der erforderlichen Präzision wie Science Fiction. Vor nunmehr genau 20 Jahren wurde die Idee geboren, die Elektronen des Moleküls selbst zu nutzen, um seine Struktur abzubilden: Man bringe dem Molekül bei – wie wir heute sagen würden – ein „Selfie“ von sich zu machen!

In einer jetzt bei Science publizierten Studie konnten Wissenschaftler des Institute of Photonic Sciences (ICFO) in Barcelona und des Heidelberger Max-Planck-Instituts für Kernphysik (MPIK) sowie weiterer Institutionen aus Deutschland, den Niederlanden; Dänemark und den USA einen entscheidenden Durchbruch vermelden. Dem Team gelang die Abbildung des Aufbruchs einer chemischen Bindung in Acetylen (C2H2) innerhalb von 9 Femtosekunden nachdem das Molekül ionisiert wurde.

Die Forscher verfolgten sämtliche Atome in einem einzelnen Acetylen-Molekül mit einer räumlichen Präzision von nur 0,05 Ångström (deutlich weniger als ein Atomdurchmesser) mit einer zeitlichen Präzision von 0,6 Femtosekunden. Dabei konnten sie den Aufbruch einer bestimmten einzelnen Bindung des Moleküls auslösen und beobachten, wie ein Proton das Molekül verlässt. Nachdem gezeigt wurde, dass die die erforderliche räumliche und zeitliche Auflösung erreicht wurde, um Schnappschüsse der molekularen Dynamik zu erhalten, möchte die Gruppe um Jens Biegert am ICFO diese als nächstes auf andere Moleküle wie Katalysatoren oder biologisch relevante Systeme anwenden.

Das Team in Barcelona entwickelte eine weltweit führende ultraschnelle Laserquelle für den mittleren Infrarot-Bereich und kombinierte diese mit einem Reaktionsmikroskop. Dieses erlaubt eine kinematisch vollständige Erfassung der dreidimensionalen Impulsverteilung der freigesetzten Elektronen und Ionen in Koinzidenz, d. h. es werden alle geladenen Bruchstücke des Moleküls gleichzeitig nachgewiesen und der Reaktion zugeordnet. Entwickelt und gebaut wurde das Reaktionsmikroskop am MPIK in der Gruppe um Robert Moshammer in der Abteilung von Thomas Pfeifer.

Hier wurde diese Art der Impulsspektroskopie, die auf Joachim Ullrich (vormals MPIK, seit 2012 Präsident der Physikalisch Technische Bundesanstalt) zurückgeht, seit Jahren erfolgreich zur Untersuchung zeitaufgelöster Moleküldynamik in starken Laserfeldern eingesetzt. Im Experiment am ICFO wird zunächst ein einzelnes Acetylen-Molekül mit einem kurzen Laserpuls räumlich ausgerichtet und dann mit einem zweiten ausreichend starken Laserpuls ionisiert. Das freigesetzte Elektron wird vom Laserfeld wieder zum Ursprungs-Molekül zurückgetrieben, wobei es an diesem streut – alles innerhalb von 9 Femtosekunden. Aufgrund seiner quantenmechanischen Welleneigenschaft bildet das Elektron bei diesem Streuprozess das gesamte Molekül ab und erlaubt so eine Rekonstruktion von dessen Struktur.

Mittels einer geschickten Analyse der Daten konnten die Physiker ferner zeigen, dass die Orientierung des Moleküls relativ zur Richtung des elektrischen Feldes des Lasers ganz grundlegend die Dynamik der Reaktion ändert. Bei paralleler Ausrichtung wurde eine Vibration des Moleküls entlang der Feldrichtung beobachtet während bei senkrechter Ausrichtung eine der C–H-Bindungen aufbrach.

In dem Experiment wurde der Aufbruch der Bindung erstmals visualisiert und beobachtet, wie das Protons das Acetylen-Ion verlässt. Zum Erfolg hat auch die großartige Zusammenarbeit zwischen Experimentatoren und Theoretikern, Atomphysikern und Quantenchemikern des ICFO und MPIK, der Physikalisch-Technischen Bundesanstalt, der Kansas State University, des Center for Free Electron Laser Science (DESY/CUI) sowie der Universitäten Jena, Kassel, Aarhus und Leiden beigetragen.

Originalveröffentlichung:
Ultrafast electron diffraction imaging of bond breaking in di-ionized acetylene
B. Wolter et al.
Science 354, 308 (2016)

Kontakt:

Dr. Robert Moshammer
MPI für Kernphysik, Heidelberg
Tel: (+49)6221-516-461
E-Mail: robert.moshammer@mpi-hd.mpg.de

Prof. Dr. Jens Biegert
Attoscience and Ultrafast Optics
Institute of Photonic Sciences, Barcelona
Tel.: (+34)93-553-4088
E-Mail: jens.biegert@icfo.eu

Weitere Informationen:

http://science.sciencemag.org/content/354/6310/308 Originalveröffentlichung (Science, 21. Oktober 2016)
https://www.mpi-hd.mpg.de/mpi/de/pfeifer/pfeifer-division-home Abteilung „Quantum Dynamics and Control“ am MPIK
http://atto.icfo.es Institute of Photonic Sciences, Barcelona

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

Weitere Berichte zu: Atome Aufbruch Elektron Elektronen Kernphysik MPIK Molekül Photonic Reaktionsmikroskop

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lasing am Limit
15.02.2018 | Technische Universität Berlin

nachricht Forschung für die LED-Tapete der Zukunft
15.02.2018 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zukunft wird gedruckt

19.02.2018 | Architektur Bauwesen

Fraunhofer HHI präsentiert neueste VR- und 5G-Technologien auf dem Mobile World Congress

19.02.2018 | Messenachrichten

Stabile Gashydrate lösen Hangrutschung aus

19.02.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics