Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Molekül-Selfie“ enthüllt den Aufbruch einer chemischen Bindung

21.10.2016

Wissenschaftlern des Institute of Photonic Sciences (Barcelona) ist es gelungen, die Position aller Atome eines Moleküls zu verfolgen während der Aufbruch einer der chemischen Bindungen ein einzelnes Proton freisetzt. Hierzu wurde ein am Heidelberger Max-Planck-Institut für Kernphysik entwickeltes Reaktionsmikroskop verwendet [Science, 21. Oktober 2016].

Man stelle sich vor, die einzelnen Atome eines Moleküls ließen sich während einer chemischen Reaktion beobachten: Wie sie sich umlagern, um eine neue Substanz zu bilden oder wie Bausteine der DNS sich bewegen und vervielfältigt werden. Diese Fähigkeit würde bisher unerreichte Einsichten bieten, um diese Prozesse besser zu verstehen und möglicherweise zu kontrollieren.


Schematische Darstellung des Aufbruchs einer molekularen Bindung in Acetylen (C2H2).

Grafik: ICFO/Scixel.

Die simple Idee, den Aufbruch oder die Umwandlung von Molekülen während einer chemischen Reaktion zu beobachten, war bisher unerreichbar, denn sie setzt voraus, alle Atome, die das Molekül bilden, zu verfolgen – und dies mit subatomarer räumlicher Auflösung innerhalb weniger Femtosekunden (= ein Millionstel einer Milliardstel Sekunde). Daher klangen derartige „Schnappschüsse“ einer molekularen Reaktion mit der erforderlichen Präzision wie Science Fiction. Vor nunmehr genau 20 Jahren wurde die Idee geboren, die Elektronen des Moleküls selbst zu nutzen, um seine Struktur abzubilden: Man bringe dem Molekül bei – wie wir heute sagen würden – ein „Selfie“ von sich zu machen!

In einer jetzt bei Science publizierten Studie konnten Wissenschaftler des Institute of Photonic Sciences (ICFO) in Barcelona und des Heidelberger Max-Planck-Instituts für Kernphysik (MPIK) sowie weiterer Institutionen aus Deutschland, den Niederlanden; Dänemark und den USA einen entscheidenden Durchbruch vermelden. Dem Team gelang die Abbildung des Aufbruchs einer chemischen Bindung in Acetylen (C2H2) innerhalb von 9 Femtosekunden nachdem das Molekül ionisiert wurde.

Die Forscher verfolgten sämtliche Atome in einem einzelnen Acetylen-Molekül mit einer räumlichen Präzision von nur 0,05 Ångström (deutlich weniger als ein Atomdurchmesser) mit einer zeitlichen Präzision von 0,6 Femtosekunden. Dabei konnten sie den Aufbruch einer bestimmten einzelnen Bindung des Moleküls auslösen und beobachten, wie ein Proton das Molekül verlässt. Nachdem gezeigt wurde, dass die die erforderliche räumliche und zeitliche Auflösung erreicht wurde, um Schnappschüsse der molekularen Dynamik zu erhalten, möchte die Gruppe um Jens Biegert am ICFO diese als nächstes auf andere Moleküle wie Katalysatoren oder biologisch relevante Systeme anwenden.

Das Team in Barcelona entwickelte eine weltweit führende ultraschnelle Laserquelle für den mittleren Infrarot-Bereich und kombinierte diese mit einem Reaktionsmikroskop. Dieses erlaubt eine kinematisch vollständige Erfassung der dreidimensionalen Impulsverteilung der freigesetzten Elektronen und Ionen in Koinzidenz, d. h. es werden alle geladenen Bruchstücke des Moleküls gleichzeitig nachgewiesen und der Reaktion zugeordnet. Entwickelt und gebaut wurde das Reaktionsmikroskop am MPIK in der Gruppe um Robert Moshammer in der Abteilung von Thomas Pfeifer.

Hier wurde diese Art der Impulsspektroskopie, die auf Joachim Ullrich (vormals MPIK, seit 2012 Präsident der Physikalisch Technische Bundesanstalt) zurückgeht, seit Jahren erfolgreich zur Untersuchung zeitaufgelöster Moleküldynamik in starken Laserfeldern eingesetzt. Im Experiment am ICFO wird zunächst ein einzelnes Acetylen-Molekül mit einem kurzen Laserpuls räumlich ausgerichtet und dann mit einem zweiten ausreichend starken Laserpuls ionisiert. Das freigesetzte Elektron wird vom Laserfeld wieder zum Ursprungs-Molekül zurückgetrieben, wobei es an diesem streut – alles innerhalb von 9 Femtosekunden. Aufgrund seiner quantenmechanischen Welleneigenschaft bildet das Elektron bei diesem Streuprozess das gesamte Molekül ab und erlaubt so eine Rekonstruktion von dessen Struktur.

Mittels einer geschickten Analyse der Daten konnten die Physiker ferner zeigen, dass die Orientierung des Moleküls relativ zur Richtung des elektrischen Feldes des Lasers ganz grundlegend die Dynamik der Reaktion ändert. Bei paralleler Ausrichtung wurde eine Vibration des Moleküls entlang der Feldrichtung beobachtet während bei senkrechter Ausrichtung eine der C–H-Bindungen aufbrach.

In dem Experiment wurde der Aufbruch der Bindung erstmals visualisiert und beobachtet, wie das Protons das Acetylen-Ion verlässt. Zum Erfolg hat auch die großartige Zusammenarbeit zwischen Experimentatoren und Theoretikern, Atomphysikern und Quantenchemikern des ICFO und MPIK, der Physikalisch-Technischen Bundesanstalt, der Kansas State University, des Center for Free Electron Laser Science (DESY/CUI) sowie der Universitäten Jena, Kassel, Aarhus und Leiden beigetragen.

Originalveröffentlichung:
Ultrafast electron diffraction imaging of bond breaking in di-ionized acetylene
B. Wolter et al.
Science 354, 308 (2016)

Kontakt:

Dr. Robert Moshammer
MPI für Kernphysik, Heidelberg
Tel: (+49)6221-516-461
E-Mail: robert.moshammer@mpi-hd.mpg.de

Prof. Dr. Jens Biegert
Attoscience and Ultrafast Optics
Institute of Photonic Sciences, Barcelona
Tel.: (+34)93-553-4088
E-Mail: jens.biegert@icfo.eu

Weitere Informationen:

http://science.sciencemag.org/content/354/6310/308 Originalveröffentlichung (Science, 21. Oktober 2016)
https://www.mpi-hd.mpg.de/mpi/de/pfeifer/pfeifer-division-home Abteilung „Quantum Dynamics and Control“ am MPIK
http://atto.icfo.es Institute of Photonic Sciences, Barcelona

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

Weitere Berichte zu: Atome Aufbruch Elektron Elektronen Kernphysik MPIK Molekül Photonic Reaktionsmikroskop

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Nano-Uhr mit präzisen Zeigern
21.11.2017 | Universität Wien

nachricht ESO-Beobachtungen zeigen, dass der erste interstellare Asteroid mit nichts vergleichbar ist, was wir bisher kennen
21.11.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein

21.11.2017 | Geowissenschaften

Eine Nano-Uhr mit präzisen Zeigern

21.11.2017 | Physik Astronomie

Zentraler Schalter

21.11.2017 | Biowissenschaften Chemie