Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekül für Molekül zum Quantenfilm

26.03.2012
Die quantenphysikalischen Welleneigenschaften massiver Teilchen faszinieren PhysikerInnen seit mehr als 80 Jahren, da sie im Widerspruch zu unseren Alltagserfahrungen von Realität und Lokalität stehen.

Einem internationalen Forschungsteam ist es nun gelungen einen Film zu drehen, der zeigt, wie aus dem zufälligen Auftreffen einzelner Moleküle ein quantenmechanisches Interferenzmuster entsteht, das so groß ist, dass man es mit einer Kamera leicht sehen kann. Die Dualität von Teilchen und Welle, Zufall und Vorherbestimmtheit, Lokalität und Delokalisierung werden so visuell und intuitiv sichtbar. "Seeing is believing": Der Film von Thomas Juffmann et al. ist online in "Nature Nanotechnology".


Ausgewählte Momentaufnahmen eines Films, der zeigt, wie ein Quanteninterferenzmuster aus einzelnen Phthalocyanin-Molekülen entsteht.
Bildrechte: Universität Wien/Juffmann et al. (Nature Nanotechnology Online Publikation 25.3.2012)

Eine Quantenpremiere mit Farbstoffmolekülen als Hauptdarsteller

Der Nobelpreisträger Richard Feynman behauptete einst, dass die durch Materiewellen verursachten Interferenzeffekte das einzige Rätsel der Quantenphysik beinhalteten. Materiewellen besser zu verstehen und für neuartige Anwendungen einzusetzen, steht auch im Zentrum der Forschung des Quantennanophysik-Teams um Markus Arndt, Professor für Quantennanophysik an der Universität Wien und am Vienna Center for Quantum Science and Technology (VCQ).

Zur Entstehung des Quantenfilms

Erstmals zeigen die WissenschaftlerInnen nun in einem Film, wie bis zu 100 Mikrometer (Zehntelmillimeter) große quantenmechanische Beugungsstrukturen wohlgeordnet aus zufällig eintreffenden einzelnen Phthalocyanin-Molekülen entstehen, nachdem diese hochfluoreszierenden Teilchen ein hauchdünnes nanomechanisches Gitter durchflogen haben. Sobald die Moleküle auf dem Detektor auftreffen, werden sie mittels eines hochauflösenden Fluoreszenzmikroskops in Echtzeit abgebildet. Die Empfindlichkeit des Versuchsaufbaus ist dabei so sensibel, dass jedes der Moleküle einzeln als leuchtender Punkt für die Kamera sichtbar gemacht werden kann. Dabei kann die Position jedes Moleküls mit einer Genauigkeit von rund zehn Nanometern vermessen werden. Das ist weniger als ein Tausendstel des Durchmessers eines menschlichen Haares und immer noch ein Sechzigstel der Wellenlänge des abbildenden Lichtes.

Ein Hauch von Nichts

Im Experiment stellen insbesondere "van der Waals-Kräfte" zwischen den Molekülen und dem Gitter eine Herausforderung dar. Sie treten aufgrund von Quantenfluktuationen des Vakuums zwischen Molekül und Gitterwand auf und beeinflussen die beobachteten Interferenzmuster stark. Um diese Wechselwirkung zu verringern, wurden nun nur zehn Nanometer dünne Gitter verwendet, was nur noch rund 50 Lagen von Siliziumnitrid entspricht. Die Gitterspalte wurde dafür von den Nanotechnologen um Ori Cheshnovski, Professor an der Universität Tel Aviv, mittels eines fokussierten Ionenstrahls in die ultradünne Siliziumnitrid-Membran geschnitten.

Maßgeschneiderte Nanopartikel

Bereits in der vorliegenden Studie konnten die Experimente auf schwerere Derivate von Phthalocyanin ausgeweitet werden, die von der Gruppe um Marcel Mayor, Professor an der Universität Basel, für die Experimente maßgeschneidert synthetisiert wurden. Sie sind die bislang massivsten Moleküle, für die die quantenmechanische Fernfeldbeugung untersucht wurde.

Motivation und Fortsetzung

Die neu entwickelten und neu kombinierten Mikro- und Nanotechnologien für die Erzeugung, Beugung und Detektion von Molekularstrahlen sind relevant für die Ausdehnung von Quanteninterferenz-Experimenten zu immer komplexeren Objekten, sind aber teils auch generalisierbar für die Atominterferometrie.

Die Experimente haben vor allem eine didaktische Komponente: Sie machen den Einzelteilchencharakter eines komplexen Quantenbeugungsmusters auf makroskopischer Skala für das Auge sichtbar. Man kann sie in Echtzeit entstehen sehen, aber auch nach Stunden noch anschauen. Das Experiment macht den Welle-Teilchen-Dualismus der Quantenphysik somit auf eine besondere Art greifbar.

Die Experimente haben aber auch praktische Aspekte: Sie ermöglichen die Vermessung molekularer Eigenschaften in der Nähe nanomechanischer Strukturen und zeigen den Weg zu Experimenten, bei denen einzelne Moleküle nur noch an wenigen Atomen gebeugt werden können.

Der Film wird ab Montag, 26. März 2012, auf der Webseite www.quantumnano.at zur Ansicht bereitstehen.

Dieses Projekt wurde vom FWF Projekt Z149-N16 (Wittgenstein), ESF/FWF/SNF MIME (I146) und dem Schweizer Nationalfonds im NCCR "Nanoscale Science" unterstützt.

Publikation in "Nature Nanotechnology"
Real-time single-molecule imaging of quantum interference: Thomas Juffmann, Adriana Milic, Michael Müllneritsch, Peter Asenbaum, Alexander Tsukernik, Jens Tüxen, Marcel Mayor, Ori Cheshnovsky and Markus Arndt. Nature Nanotechnology (2012).

DOI: 10.1038/NNANO.2012.34

Wissenschaftliche Kontakte
Univ.-Prof. Dr. Markus Arndt
Quantennanophysik
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-512 10
markus.arndt@univie.ac.at
DI Thomas Juffmann
Quantennanophysik
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-512 11
Thomas.juffmann@univie.ac.at
www.quantumnano.at
Rückfragehinweis
Mag. Alexandra Frey
Öffentlichkeitsarbeit
Universität Wien
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Alexandra Frey | Universität Wien
Weitere Informationen:
http://www.quantumnano.at/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics