Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekül für Molekül zum Quantenfilm

26.03.2012
Die quantenphysikalischen Welleneigenschaften massiver Teilchen faszinieren PhysikerInnen seit mehr als 80 Jahren, da sie im Widerspruch zu unseren Alltagserfahrungen von Realität und Lokalität stehen.

Einem internationalen Forschungsteam ist es nun gelungen einen Film zu drehen, der zeigt, wie aus dem zufälligen Auftreffen einzelner Moleküle ein quantenmechanisches Interferenzmuster entsteht, das so groß ist, dass man es mit einer Kamera leicht sehen kann. Die Dualität von Teilchen und Welle, Zufall und Vorherbestimmtheit, Lokalität und Delokalisierung werden so visuell und intuitiv sichtbar. "Seeing is believing": Der Film von Thomas Juffmann et al. ist online in "Nature Nanotechnology".


Ausgewählte Momentaufnahmen eines Films, der zeigt, wie ein Quanteninterferenzmuster aus einzelnen Phthalocyanin-Molekülen entsteht.
Bildrechte: Universität Wien/Juffmann et al. (Nature Nanotechnology Online Publikation 25.3.2012)

Eine Quantenpremiere mit Farbstoffmolekülen als Hauptdarsteller

Der Nobelpreisträger Richard Feynman behauptete einst, dass die durch Materiewellen verursachten Interferenzeffekte das einzige Rätsel der Quantenphysik beinhalteten. Materiewellen besser zu verstehen und für neuartige Anwendungen einzusetzen, steht auch im Zentrum der Forschung des Quantennanophysik-Teams um Markus Arndt, Professor für Quantennanophysik an der Universität Wien und am Vienna Center for Quantum Science and Technology (VCQ).

Zur Entstehung des Quantenfilms

Erstmals zeigen die WissenschaftlerInnen nun in einem Film, wie bis zu 100 Mikrometer (Zehntelmillimeter) große quantenmechanische Beugungsstrukturen wohlgeordnet aus zufällig eintreffenden einzelnen Phthalocyanin-Molekülen entstehen, nachdem diese hochfluoreszierenden Teilchen ein hauchdünnes nanomechanisches Gitter durchflogen haben. Sobald die Moleküle auf dem Detektor auftreffen, werden sie mittels eines hochauflösenden Fluoreszenzmikroskops in Echtzeit abgebildet. Die Empfindlichkeit des Versuchsaufbaus ist dabei so sensibel, dass jedes der Moleküle einzeln als leuchtender Punkt für die Kamera sichtbar gemacht werden kann. Dabei kann die Position jedes Moleküls mit einer Genauigkeit von rund zehn Nanometern vermessen werden. Das ist weniger als ein Tausendstel des Durchmessers eines menschlichen Haares und immer noch ein Sechzigstel der Wellenlänge des abbildenden Lichtes.

Ein Hauch von Nichts

Im Experiment stellen insbesondere "van der Waals-Kräfte" zwischen den Molekülen und dem Gitter eine Herausforderung dar. Sie treten aufgrund von Quantenfluktuationen des Vakuums zwischen Molekül und Gitterwand auf und beeinflussen die beobachteten Interferenzmuster stark. Um diese Wechselwirkung zu verringern, wurden nun nur zehn Nanometer dünne Gitter verwendet, was nur noch rund 50 Lagen von Siliziumnitrid entspricht. Die Gitterspalte wurde dafür von den Nanotechnologen um Ori Cheshnovski, Professor an der Universität Tel Aviv, mittels eines fokussierten Ionenstrahls in die ultradünne Siliziumnitrid-Membran geschnitten.

Maßgeschneiderte Nanopartikel

Bereits in der vorliegenden Studie konnten die Experimente auf schwerere Derivate von Phthalocyanin ausgeweitet werden, die von der Gruppe um Marcel Mayor, Professor an der Universität Basel, für die Experimente maßgeschneidert synthetisiert wurden. Sie sind die bislang massivsten Moleküle, für die die quantenmechanische Fernfeldbeugung untersucht wurde.

Motivation und Fortsetzung

Die neu entwickelten und neu kombinierten Mikro- und Nanotechnologien für die Erzeugung, Beugung und Detektion von Molekularstrahlen sind relevant für die Ausdehnung von Quanteninterferenz-Experimenten zu immer komplexeren Objekten, sind aber teils auch generalisierbar für die Atominterferometrie.

Die Experimente haben vor allem eine didaktische Komponente: Sie machen den Einzelteilchencharakter eines komplexen Quantenbeugungsmusters auf makroskopischer Skala für das Auge sichtbar. Man kann sie in Echtzeit entstehen sehen, aber auch nach Stunden noch anschauen. Das Experiment macht den Welle-Teilchen-Dualismus der Quantenphysik somit auf eine besondere Art greifbar.

Die Experimente haben aber auch praktische Aspekte: Sie ermöglichen die Vermessung molekularer Eigenschaften in der Nähe nanomechanischer Strukturen und zeigen den Weg zu Experimenten, bei denen einzelne Moleküle nur noch an wenigen Atomen gebeugt werden können.

Der Film wird ab Montag, 26. März 2012, auf der Webseite www.quantumnano.at zur Ansicht bereitstehen.

Dieses Projekt wurde vom FWF Projekt Z149-N16 (Wittgenstein), ESF/FWF/SNF MIME (I146) und dem Schweizer Nationalfonds im NCCR "Nanoscale Science" unterstützt.

Publikation in "Nature Nanotechnology"
Real-time single-molecule imaging of quantum interference: Thomas Juffmann, Adriana Milic, Michael Müllneritsch, Peter Asenbaum, Alexander Tsukernik, Jens Tüxen, Marcel Mayor, Ori Cheshnovsky and Markus Arndt. Nature Nanotechnology (2012).

DOI: 10.1038/NNANO.2012.34

Wissenschaftliche Kontakte
Univ.-Prof. Dr. Markus Arndt
Quantennanophysik
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-512 10
markus.arndt@univie.ac.at
DI Thomas Juffmann
Quantennanophysik
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-512 11
Thomas.juffmann@univie.ac.at
www.quantumnano.at
Rückfragehinweis
Mag. Alexandra Frey
Öffentlichkeitsarbeit
Universität Wien
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Alexandra Frey | Universität Wien
Weitere Informationen:
http://www.quantumnano.at/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik