Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mögliche Erklärung für die Dominanz der Materie über Antimaterie im Universum

04.08.2017

Neutrinos und Antineutrinos – auch Geisterteilchen genannt, weil sie schwierig nachzuweisen sind – können sich ineinander umwandeln. Die internationale T2K Kollaboration fand nun erste Hinweise, dass die Dominanz der Materie über Antimaterie im Universum durch das unterschiedliche Umwandlungs-Verhalten der Neutrinos und Antineutrinos erklärt werden könnte. Dies ist ein wichtiger Meilenstein für das Verständnis des Universums. Ein Team von Teilchenphysikern der Universität Bern hat entscheidende Beiträge zum Experiment geleistet.

Das Universum besteht in erster Linie aus Materie, und der offensichtliche Mangel an Antimaterie ist eine der faszinierendsten Fragen der Wissenschaft. Die T2K-Kollaboration, an der auch die Universität Bern beteiligt ist, hat heute in einem Vortrag am KEK Forschungszentrum in Tsukuba, Japan, verkündet, dass erste Hinweise gefunden wurden, dass mit 95 Prozent Wahrscheinlichkeit die Symmetrie zwischen Materie und Antimaterie (die sogenannte «CP-Symmetrie») für Neutrinos verletzt ist.


Ein Physiker der Universität Bern bei der Installation des Myon Monitors am T2K Experiment.

zvg Albert Einstein Center for Fundamental Physics (AEC), Laboratorium für Hochenergiephysik, Universität Bern


Eine durch das T2K-Experiment beobachtete Elektron-Neutrino-Wechselwirkung.

zvg Albert Einstein Center for Fundamental Physics (AEC), Laboratorium für Hochenergiephysik, Universität Bern

Unterschiedliche Transformation von Neutrinos und Antineutrinos

Neutrinos sind Elementarteilchen, die fast ohne Wechselwirkung durch die Materie reisen. Sie existieren als drei verschiedene Typen: als Elektron-, Myon- und Tau-Neutrinos und als deren jeweilige Antiteilchen (den Antineutrinos). Im Jahr 2013 entdeckte T2K eine neue Art von Transformation unter Neutrinos (Neutrino-Oszillation), bei welcher Myon-Neutrinos in Elektron-Neutrinos umgewandelt werden, während sie sich in Raum und Zeit bewegen.

Die nun präsentierte T2K-Studie lehnt mit 95 Prozent Wahrscheinlichkeit die Hypothese ab, dass die Umwandlung der Anti-Neutrinos (von Myon-Antineutrinos zu Elektron-Antineutrinos) gleich häufig stattfindet. Dies ist der erste Hinweis, dass die Symmetrie zwischen Materie und Antimaterie in der Neutrino-Oszillationen verletzt ist, und deswegen die Neutrinos auch bei der Asymmetrie Materie und Antimaterie im Universum eine Rolle spielen.

«Diese Ergebnisse gehören zu den wichtigsten Erkenntnissen in der Neutrino-Physik in den letzten Jahren. Und sie eröffnen durch den Nachweis dieser winzigen, aber messbaren Wirkung, den Weg zu weiteren spannenden Messungen in den nächsten Jahren», so Prof. Antonio Ereditato, Direktor des Laboratoriums für Hochenergiephysik der Universität Bern und Leiter der Berner T2K-Gruppe.

Ereditato fügt hinzu: «Die Natur scheint anzuzeigen, dass Neutrinos für die beobachtete Vorherrschaft der Materie über Antimaterie im Universum verantwortlich sein können. Was wir gemessen haben, rechtfertigt unsere derzeitigen Bemühungen bei der Vorbereitung des nächsten wissenschaftlichen Unternehmens, DUNE, dem ultimativen Neutrino-Detektor in den USA, der eine endgültige Entdeckung ermöglichen sollte.»

Ein bemerkenswerter Beitrag der Berner Gruppe

Für das T2K-Experiment wird am Proton Accelerator Research Complex (J-PARC) in Tokai an der Ostküste Japans ein Myon-Neutrino-Strahl produziert, die in 295 Kilometer Entfernung vom gigantischen Super-Kamiokande-Untergrund-Detektor gemessen werden.

T2K steht für «Tokai to Kamiokande». Der Neutrino-Strahl muss unmittelbar nach der Produktion vollständig charakterisiert werden, also bevor Neutrinos sich umzuwandeln beginnen. Zu diesem Zweck wurde der ND280-Detektor in der Nähe des Neutrino-Ursprungsorts gebaut und installiert.

Forscher der Universität Bern haben zusammen mit Kollegen aus Genf, der ETH Zürich und anderen internationalen Instituten zum Design, zur Realisierung und zum Betrieb von ND280 beigetragen. Insbesondere kümmerte sich die Gruppe aus Bern um den großen Magneten, der den Detektor umgibt, und sie hat den sogenannten «Myon Monitor» gebaut.

Mit jedem Neutrino entsteht auch ein Myon, von welchen die die Intensität und die Energie gemessen wird. Die Berner Gruppe ist derzeit sehr aktiv bei der Bestimmung der Wahrscheinlichkeit der Wechselwirkung von Neutrinos mit dem ND280-Apparat: ein wichtiger Bestandteil der hochpräzisen Messungen der Neutrino-Umwandlungen.

Kontakt:
Prof. Antonio Ereditato
Albert Einstein Center for Fundamental Physics (AEC), Laboratorium für Hochenergiephysik,
Universität Bern
Tel. +41 (0) 31 631 85 66 / antonio.ereditato@lhep.unibe.ch

Prof. Michele Weber
Albert Einstein Center for Fundamental Physics (AEC), Laboratorium für Hochenergiephysik
Universität Bern
Tel. +41 (0) 31 631 51 46 / weber@lhep.unibe.ch

Dr. Ciro Pistillo
Albert Einstein Center for Fundamental Physics (AEC), Laboratorium für Hochenergiephysik
Universität Bern
Tel. +41 (0) 31 631 40 63 / ciro.pistillo@lhep.unibe.ch

Mitglieder der Berner T2K-Gruppe:
Akitaka Ariga, Roman Berner, Antonio Ereditato, Conor Francois, Patrick Koller, Ciro Pistillo, Asmita Redij, Callum Wilkinson.

Weitere Informationen:

http://www.unibe.ch/aktuell/medien/media_relations/medienmitteilungen/2017/medie...

Nathalie Matter | Universität Bern

Weitere Berichte zu: Accelerator Antimaterie Callum Dominanz Hochenergiephysik Materie Myon Neutrinos Symmetrie Universum

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte