Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mögliche Erklärung für die Dominanz der Materie über Antimaterie im Universum

04.08.2017

Neutrinos und Antineutrinos – auch Geisterteilchen genannt, weil sie schwierig nachzuweisen sind – können sich ineinander umwandeln. Die internationale T2K Kollaboration fand nun erste Hinweise, dass die Dominanz der Materie über Antimaterie im Universum durch das unterschiedliche Umwandlungs-Verhalten der Neutrinos und Antineutrinos erklärt werden könnte. Dies ist ein wichtiger Meilenstein für das Verständnis des Universums. Ein Team von Teilchenphysikern der Universität Bern hat entscheidende Beiträge zum Experiment geleistet.

Das Universum besteht in erster Linie aus Materie, und der offensichtliche Mangel an Antimaterie ist eine der faszinierendsten Fragen der Wissenschaft. Die T2K-Kollaboration, an der auch die Universität Bern beteiligt ist, hat heute in einem Vortrag am KEK Forschungszentrum in Tsukuba, Japan, verkündet, dass erste Hinweise gefunden wurden, dass mit 95 Prozent Wahrscheinlichkeit die Symmetrie zwischen Materie und Antimaterie (die sogenannte «CP-Symmetrie») für Neutrinos verletzt ist.


Ein Physiker der Universität Bern bei der Installation des Myon Monitors am T2K Experiment.

zvg Albert Einstein Center for Fundamental Physics (AEC), Laboratorium für Hochenergiephysik, Universität Bern


Eine durch das T2K-Experiment beobachtete Elektron-Neutrino-Wechselwirkung.

zvg Albert Einstein Center for Fundamental Physics (AEC), Laboratorium für Hochenergiephysik, Universität Bern

Unterschiedliche Transformation von Neutrinos und Antineutrinos

Neutrinos sind Elementarteilchen, die fast ohne Wechselwirkung durch die Materie reisen. Sie existieren als drei verschiedene Typen: als Elektron-, Myon- und Tau-Neutrinos und als deren jeweilige Antiteilchen (den Antineutrinos). Im Jahr 2013 entdeckte T2K eine neue Art von Transformation unter Neutrinos (Neutrino-Oszillation), bei welcher Myon-Neutrinos in Elektron-Neutrinos umgewandelt werden, während sie sich in Raum und Zeit bewegen.

Die nun präsentierte T2K-Studie lehnt mit 95 Prozent Wahrscheinlichkeit die Hypothese ab, dass die Umwandlung der Anti-Neutrinos (von Myon-Antineutrinos zu Elektron-Antineutrinos) gleich häufig stattfindet. Dies ist der erste Hinweis, dass die Symmetrie zwischen Materie und Antimaterie in der Neutrino-Oszillationen verletzt ist, und deswegen die Neutrinos auch bei der Asymmetrie Materie und Antimaterie im Universum eine Rolle spielen.

«Diese Ergebnisse gehören zu den wichtigsten Erkenntnissen in der Neutrino-Physik in den letzten Jahren. Und sie eröffnen durch den Nachweis dieser winzigen, aber messbaren Wirkung, den Weg zu weiteren spannenden Messungen in den nächsten Jahren», so Prof. Antonio Ereditato, Direktor des Laboratoriums für Hochenergiephysik der Universität Bern und Leiter der Berner T2K-Gruppe.

Ereditato fügt hinzu: «Die Natur scheint anzuzeigen, dass Neutrinos für die beobachtete Vorherrschaft der Materie über Antimaterie im Universum verantwortlich sein können. Was wir gemessen haben, rechtfertigt unsere derzeitigen Bemühungen bei der Vorbereitung des nächsten wissenschaftlichen Unternehmens, DUNE, dem ultimativen Neutrino-Detektor in den USA, der eine endgültige Entdeckung ermöglichen sollte.»

Ein bemerkenswerter Beitrag der Berner Gruppe

Für das T2K-Experiment wird am Proton Accelerator Research Complex (J-PARC) in Tokai an der Ostküste Japans ein Myon-Neutrino-Strahl produziert, die in 295 Kilometer Entfernung vom gigantischen Super-Kamiokande-Untergrund-Detektor gemessen werden.

T2K steht für «Tokai to Kamiokande». Der Neutrino-Strahl muss unmittelbar nach der Produktion vollständig charakterisiert werden, also bevor Neutrinos sich umzuwandeln beginnen. Zu diesem Zweck wurde der ND280-Detektor in der Nähe des Neutrino-Ursprungsorts gebaut und installiert.

Forscher der Universität Bern haben zusammen mit Kollegen aus Genf, der ETH Zürich und anderen internationalen Instituten zum Design, zur Realisierung und zum Betrieb von ND280 beigetragen. Insbesondere kümmerte sich die Gruppe aus Bern um den großen Magneten, der den Detektor umgibt, und sie hat den sogenannten «Myon Monitor» gebaut.

Mit jedem Neutrino entsteht auch ein Myon, von welchen die die Intensität und die Energie gemessen wird. Die Berner Gruppe ist derzeit sehr aktiv bei der Bestimmung der Wahrscheinlichkeit der Wechselwirkung von Neutrinos mit dem ND280-Apparat: ein wichtiger Bestandteil der hochpräzisen Messungen der Neutrino-Umwandlungen.

Kontakt:
Prof. Antonio Ereditato
Albert Einstein Center for Fundamental Physics (AEC), Laboratorium für Hochenergiephysik,
Universität Bern
Tel. +41 (0) 31 631 85 66 / antonio.ereditato@lhep.unibe.ch

Prof. Michele Weber
Albert Einstein Center for Fundamental Physics (AEC), Laboratorium für Hochenergiephysik
Universität Bern
Tel. +41 (0) 31 631 51 46 / weber@lhep.unibe.ch

Dr. Ciro Pistillo
Albert Einstein Center for Fundamental Physics (AEC), Laboratorium für Hochenergiephysik
Universität Bern
Tel. +41 (0) 31 631 40 63 / ciro.pistillo@lhep.unibe.ch

Mitglieder der Berner T2K-Gruppe:
Akitaka Ariga, Roman Berner, Antonio Ereditato, Conor Francois, Patrick Koller, Ciro Pistillo, Asmita Redij, Callum Wilkinson.

Weitere Informationen:

http://www.unibe.ch/aktuell/medien/media_relations/medienmitteilungen/2017/medie...

Nathalie Matter | Universität Bern

Weitere Berichte zu: Accelerator Antimaterie Callum Dominanz Hochenergiephysik Materie Myon Neutrinos Symmetrie Universum

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Alternder Stern bläst Materie von sich
21.09.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Granulare Materie blitzschnell im Bild

21.09.2017 | Verfahrenstechnologie

Hochpräzise Verschaltung in der Hirnrinde

21.09.2017 | Biowissenschaften Chemie

Überleben auf der Schneeball-Erde

21.09.2017 | Biowissenschaften Chemie