Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit super-schweren Elektronen zum absoluten Nullpunkt

12.09.2016

Neu entwickeltes Quantenmaterial ermöglicht deutlich effizientere Entmagnetisierungskühlung

Um sehr tiefe Temperaturen knapp über dem absoluten Nullpunkt bei −273.16 °C zu erzeugen, werden magnetische Materialien adiabatisch, also ohne Wärmeaustausch mit der Umgebung, durch Abschaltung eines äußeren Magnetfelds entmagnetisiert.


Verlauf der Temperatur eines Yb0.81Sc0.19Co2Zn20 Einkristalls bei Reduktion des Magnetfelds von 8 auf 0 Tesla.

© Universität Augsburg, IFP/EP VI

Bislang kommen hierzu verdünnte magnetische Salze zum Einsatz. Forscher aus Augsburg, Göttingen, Kyoto und von der Iowa State University berichten in „Science Advances“ über eine von ihnen entwickelte neue metallische Verbindung mit super-schweren Elektronen, deren Kühleffizienz diejenige der bei der adiabatischen Entmagnetisierung bisher verwendeten magnetischen Salze signifikant übersteigt.

In der Grundlagenforschung werden sehr tiefe Temperaturen benötigt, um neuartige Quanteneigenschaften von Materialien zu untersuchen oder empfindliche Teilchendetektoren zu betreiben. Meist wird das sehr seltene 3-He-Gas als Kühlmittel verwendet. Es weist den niedrigsten Siedepunkt aller Stoffe auf, ist aber sehr teuer. Sein Preis hat sich in der letzten Dekade mehr als verzehnfacht.

Gängig: die abiabatische Entmagnetisierung magnetischer Salze

Eine preisgünstige und unkomplizierte Alternative zu 3-He-Gas ist das Kühlverfahren der adiabatischen Entmagnetisierung. Hier dienen zum Kühlen magnetische Salze, deren Momente nur sehr schwach wechselwirken, so dass sie sich ohne Magnetfeld erst bei ganz tiefen Temperaturen regelmäßig anordnen, wohingegen sie sich durch ein angelegtes Magnetfeld auch bei höheren Temperaturen ausrichten lassen.

Das Maß für die Unordnung bzw. Nicht-Anordnung der Momente in einem Material ist die sog. Entropie. Um die Entropie der bei der adiabatischen Entmagnetisierung als Kühlsubstanz verwendeten magnetischen Salze so weit wie möglich zu senken, wird sie hier in einem ersten Arbeitsschritt durch Anlegen eines Magnetfelds stark reduziert.

Anschließend wird das Feld adiabatisch, also ohne Wärmeaustausch mit der Umgebung, wieder herausgefahren, um die Entropie konstant und somit also sehr niedrig zu halten. Da diese niedrige Entropie nach Herausfahren des Magnetfelds sehr tiefe Temperaturen voraussetzt, kühlen sich die magnetischen Salze bei diesem Prozess nun stark ab, um die benötigten sehr tiefen Temperaturen zu erreichen.

Signifikante Verbesserung des Wirkungsgrads

Kommerzielle Entmagnetisierungskühler, die nach diesem Prinzip funktionieren, verwenden bislang verdünnte magnetische Salze. Deren Wärmeleitfähigkeit ist jedoch so schlecht, dass sie in ein feines Geflecht aus Metalldrähten eingebracht werden müssen, was den Wirkungsgrad des Kühlstoffs pro Volumen erheblich reduziert. Hier setzten die Augsburger Physiker und ihre Kollegen von der Universität Göttingen, der Kyoto University und der Iowa State University, Ames, an: Mit der Entwicklung der neuen magnetischen metallischen Legierung (Yb1-xScx)Co2Zn20 ist es ihnen gelungen, die Voraussetzung für eine signifikante Verbesserung des Wirkungsgrads der Entmagnetisierungskühlung zu schaffen.

Normalerweise tritt beim Abkühlen magnetischer Metalle entweder magnetische Ordnung auf oder die magnetischen Momente werden durch die Leitungselektronen abgeschirmt und damit unwirksam. Beides bewirkt, dass die Entropie bereits bei hoher Temperatur stark reduziert ist, was eine Entmagnetisierungskühlung zu tiefen Temperaturen unmöglich macht. „Unser Ziel war es deshalb, beide Effekte zu verhindern, um erstmals mit einem magnetischen Metall eine effektive Entmagnetisierungskühlung zu erreichen“, so Prof. Dr. Philipp Gegenwart, der Augsburger Leiter des Forschungsprojekts.

Ausbildung super-schwerer Elektronen bei sehr tiefen Temperaturen

Das neu entwickelte (Yb1-xScx)Co2Zn20 bringt die Voraussetzungen mit, um diese Eigenschaft zu erfüllen: Im Teilbild der beigefügten Grafik ist zu erkennen, dass in dieser Legierung die magnetischen Yb-Momente von Käfigen aus Zn-Atomen umgeben sind. Diese Anordnung ist entscheidend: Sie erschwert einerseits die Abschirmung der magnetischen Momente durch Leitungselektronen, andererseits aber auch die magnetische Ordnung der Momente. Hierdurch bilden sich super-schwere Elektronen bei sehr tiefen Temperaturen aus. Eine leichte Verdünnung der Yb-Plätze durch nicht-magnetische Sc-Atome bewirkt, dass Ordnung gerade am absoluten Nullpunkt einsetzt. Dieser „Quantenkritische Punkt“ im optimierten Material ermöglicht es im Prinzip, bis zum absoluten Nullpunkt zu kühlen.

Sogar bis unter 0.03 K

Die soeben in „Science Advances“ publizierten Daten zeigen, dass sich die von Gegenwart und seinem internationalen Team entwickelte neue Verbindung bei der adiabatischen Entmagnetisierung während des Herausfahrens des Magnetfelds extrem stark abkühlt – sogar bis unter die im Versuchsaufbau tiefste messbare Temperatur von 0.03 K. Kühleffizienz und Wärmeleitfähigkeit des neuen Materials sind damit signifikant besser als bei den bislang verwendeten magnetischen Salzen. Dass das neu entwickelte Material von großem Interesse ist, wenn es um die Verbesserung von Kühlapparaturen bei sehr tiefen Temperaturen geht, liegt also auf der Hand.

Publikation:
Y. Tokiwa, B. Piening, H. S. Jeevan, S. L. Bud’ko. P. C. Canfield, P. Gegenwart, Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling. Sci. Adv. 2, e1600835 (2016).


Ansprechpartner:
Prof. Dr. Philipp Gegenwart
Lehrstuhl für Experimentalphysik VI/EKM
Institut für Physik / Zentrum für Elektronische Korrelationen und Magnetismus
Universität Augsburg
86135 Augsburg
Telefon +49(0)821/598-3650
philipp.gegewart@physik.uni-augsburg.de

Weitere Informationen:

http://advances.sciencemag.org/content/advances/2/9/e1600835.full.pdf

Klaus P. Prem | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-augsburg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Topologische Isolatoren: Neuer Phasenübergang entdeckt
17.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen
17.10.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz