Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit super-schweren Elektronen zum absoluten Nullpunkt

12.09.2016

Neu entwickeltes Quantenmaterial ermöglicht deutlich effizientere Entmagnetisierungskühlung

Um sehr tiefe Temperaturen knapp über dem absoluten Nullpunkt bei −273.16 °C zu erzeugen, werden magnetische Materialien adiabatisch, also ohne Wärmeaustausch mit der Umgebung, durch Abschaltung eines äußeren Magnetfelds entmagnetisiert.


Verlauf der Temperatur eines Yb0.81Sc0.19Co2Zn20 Einkristalls bei Reduktion des Magnetfelds von 8 auf 0 Tesla.

© Universität Augsburg, IFP/EP VI

Bislang kommen hierzu verdünnte magnetische Salze zum Einsatz. Forscher aus Augsburg, Göttingen, Kyoto und von der Iowa State University berichten in „Science Advances“ über eine von ihnen entwickelte neue metallische Verbindung mit super-schweren Elektronen, deren Kühleffizienz diejenige der bei der adiabatischen Entmagnetisierung bisher verwendeten magnetischen Salze signifikant übersteigt.

In der Grundlagenforschung werden sehr tiefe Temperaturen benötigt, um neuartige Quanteneigenschaften von Materialien zu untersuchen oder empfindliche Teilchendetektoren zu betreiben. Meist wird das sehr seltene 3-He-Gas als Kühlmittel verwendet. Es weist den niedrigsten Siedepunkt aller Stoffe auf, ist aber sehr teuer. Sein Preis hat sich in der letzten Dekade mehr als verzehnfacht.

Gängig: die abiabatische Entmagnetisierung magnetischer Salze

Eine preisgünstige und unkomplizierte Alternative zu 3-He-Gas ist das Kühlverfahren der adiabatischen Entmagnetisierung. Hier dienen zum Kühlen magnetische Salze, deren Momente nur sehr schwach wechselwirken, so dass sie sich ohne Magnetfeld erst bei ganz tiefen Temperaturen regelmäßig anordnen, wohingegen sie sich durch ein angelegtes Magnetfeld auch bei höheren Temperaturen ausrichten lassen.

Das Maß für die Unordnung bzw. Nicht-Anordnung der Momente in einem Material ist die sog. Entropie. Um die Entropie der bei der adiabatischen Entmagnetisierung als Kühlsubstanz verwendeten magnetischen Salze so weit wie möglich zu senken, wird sie hier in einem ersten Arbeitsschritt durch Anlegen eines Magnetfelds stark reduziert.

Anschließend wird das Feld adiabatisch, also ohne Wärmeaustausch mit der Umgebung, wieder herausgefahren, um die Entropie konstant und somit also sehr niedrig zu halten. Da diese niedrige Entropie nach Herausfahren des Magnetfelds sehr tiefe Temperaturen voraussetzt, kühlen sich die magnetischen Salze bei diesem Prozess nun stark ab, um die benötigten sehr tiefen Temperaturen zu erreichen.

Signifikante Verbesserung des Wirkungsgrads

Kommerzielle Entmagnetisierungskühler, die nach diesem Prinzip funktionieren, verwenden bislang verdünnte magnetische Salze. Deren Wärmeleitfähigkeit ist jedoch so schlecht, dass sie in ein feines Geflecht aus Metalldrähten eingebracht werden müssen, was den Wirkungsgrad des Kühlstoffs pro Volumen erheblich reduziert. Hier setzten die Augsburger Physiker und ihre Kollegen von der Universität Göttingen, der Kyoto University und der Iowa State University, Ames, an: Mit der Entwicklung der neuen magnetischen metallischen Legierung (Yb1-xScx)Co2Zn20 ist es ihnen gelungen, die Voraussetzung für eine signifikante Verbesserung des Wirkungsgrads der Entmagnetisierungskühlung zu schaffen.

Normalerweise tritt beim Abkühlen magnetischer Metalle entweder magnetische Ordnung auf oder die magnetischen Momente werden durch die Leitungselektronen abgeschirmt und damit unwirksam. Beides bewirkt, dass die Entropie bereits bei hoher Temperatur stark reduziert ist, was eine Entmagnetisierungskühlung zu tiefen Temperaturen unmöglich macht. „Unser Ziel war es deshalb, beide Effekte zu verhindern, um erstmals mit einem magnetischen Metall eine effektive Entmagnetisierungskühlung zu erreichen“, so Prof. Dr. Philipp Gegenwart, der Augsburger Leiter des Forschungsprojekts.

Ausbildung super-schwerer Elektronen bei sehr tiefen Temperaturen

Das neu entwickelte (Yb1-xScx)Co2Zn20 bringt die Voraussetzungen mit, um diese Eigenschaft zu erfüllen: Im Teilbild der beigefügten Grafik ist zu erkennen, dass in dieser Legierung die magnetischen Yb-Momente von Käfigen aus Zn-Atomen umgeben sind. Diese Anordnung ist entscheidend: Sie erschwert einerseits die Abschirmung der magnetischen Momente durch Leitungselektronen, andererseits aber auch die magnetische Ordnung der Momente. Hierdurch bilden sich super-schwere Elektronen bei sehr tiefen Temperaturen aus. Eine leichte Verdünnung der Yb-Plätze durch nicht-magnetische Sc-Atome bewirkt, dass Ordnung gerade am absoluten Nullpunkt einsetzt. Dieser „Quantenkritische Punkt“ im optimierten Material ermöglicht es im Prinzip, bis zum absoluten Nullpunkt zu kühlen.

Sogar bis unter 0.03 K

Die soeben in „Science Advances“ publizierten Daten zeigen, dass sich die von Gegenwart und seinem internationalen Team entwickelte neue Verbindung bei der adiabatischen Entmagnetisierung während des Herausfahrens des Magnetfelds extrem stark abkühlt – sogar bis unter die im Versuchsaufbau tiefste messbare Temperatur von 0.03 K. Kühleffizienz und Wärmeleitfähigkeit des neuen Materials sind damit signifikant besser als bei den bislang verwendeten magnetischen Salzen. Dass das neu entwickelte Material von großem Interesse ist, wenn es um die Verbesserung von Kühlapparaturen bei sehr tiefen Temperaturen geht, liegt also auf der Hand.

Publikation:
Y. Tokiwa, B. Piening, H. S. Jeevan, S. L. Bud’ko. P. C. Canfield, P. Gegenwart, Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling. Sci. Adv. 2, e1600835 (2016).


Ansprechpartner:
Prof. Dr. Philipp Gegenwart
Lehrstuhl für Experimentalphysik VI/EKM
Institut für Physik / Zentrum für Elektronische Korrelationen und Magnetismus
Universität Augsburg
86135 Augsburg
Telefon +49(0)821/598-3650
philipp.gegewart@physik.uni-augsburg.de

Weitere Informationen:

http://advances.sciencemag.org/content/advances/2/9/e1600835.full.pdf

Klaus P. Prem | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-augsburg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht Einblicke ins Atom
23.01.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie