Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit super-schweren Elektronen zum absoluten Nullpunkt

12.09.2016

Neu entwickeltes Quantenmaterial ermöglicht deutlich effizientere Entmagnetisierungskühlung

Um sehr tiefe Temperaturen knapp über dem absoluten Nullpunkt bei −273.16 °C zu erzeugen, werden magnetische Materialien adiabatisch, also ohne Wärmeaustausch mit der Umgebung, durch Abschaltung eines äußeren Magnetfelds entmagnetisiert.


Verlauf der Temperatur eines Yb0.81Sc0.19Co2Zn20 Einkristalls bei Reduktion des Magnetfelds von 8 auf 0 Tesla.

© Universität Augsburg, IFP/EP VI

Bislang kommen hierzu verdünnte magnetische Salze zum Einsatz. Forscher aus Augsburg, Göttingen, Kyoto und von der Iowa State University berichten in „Science Advances“ über eine von ihnen entwickelte neue metallische Verbindung mit super-schweren Elektronen, deren Kühleffizienz diejenige der bei der adiabatischen Entmagnetisierung bisher verwendeten magnetischen Salze signifikant übersteigt.

In der Grundlagenforschung werden sehr tiefe Temperaturen benötigt, um neuartige Quanteneigenschaften von Materialien zu untersuchen oder empfindliche Teilchendetektoren zu betreiben. Meist wird das sehr seltene 3-He-Gas als Kühlmittel verwendet. Es weist den niedrigsten Siedepunkt aller Stoffe auf, ist aber sehr teuer. Sein Preis hat sich in der letzten Dekade mehr als verzehnfacht.

Gängig: die abiabatische Entmagnetisierung magnetischer Salze

Eine preisgünstige und unkomplizierte Alternative zu 3-He-Gas ist das Kühlverfahren der adiabatischen Entmagnetisierung. Hier dienen zum Kühlen magnetische Salze, deren Momente nur sehr schwach wechselwirken, so dass sie sich ohne Magnetfeld erst bei ganz tiefen Temperaturen regelmäßig anordnen, wohingegen sie sich durch ein angelegtes Magnetfeld auch bei höheren Temperaturen ausrichten lassen.

Das Maß für die Unordnung bzw. Nicht-Anordnung der Momente in einem Material ist die sog. Entropie. Um die Entropie der bei der adiabatischen Entmagnetisierung als Kühlsubstanz verwendeten magnetischen Salze so weit wie möglich zu senken, wird sie hier in einem ersten Arbeitsschritt durch Anlegen eines Magnetfelds stark reduziert.

Anschließend wird das Feld adiabatisch, also ohne Wärmeaustausch mit der Umgebung, wieder herausgefahren, um die Entropie konstant und somit also sehr niedrig zu halten. Da diese niedrige Entropie nach Herausfahren des Magnetfelds sehr tiefe Temperaturen voraussetzt, kühlen sich die magnetischen Salze bei diesem Prozess nun stark ab, um die benötigten sehr tiefen Temperaturen zu erreichen.

Signifikante Verbesserung des Wirkungsgrads

Kommerzielle Entmagnetisierungskühler, die nach diesem Prinzip funktionieren, verwenden bislang verdünnte magnetische Salze. Deren Wärmeleitfähigkeit ist jedoch so schlecht, dass sie in ein feines Geflecht aus Metalldrähten eingebracht werden müssen, was den Wirkungsgrad des Kühlstoffs pro Volumen erheblich reduziert. Hier setzten die Augsburger Physiker und ihre Kollegen von der Universität Göttingen, der Kyoto University und der Iowa State University, Ames, an: Mit der Entwicklung der neuen magnetischen metallischen Legierung (Yb1-xScx)Co2Zn20 ist es ihnen gelungen, die Voraussetzung für eine signifikante Verbesserung des Wirkungsgrads der Entmagnetisierungskühlung zu schaffen.

Normalerweise tritt beim Abkühlen magnetischer Metalle entweder magnetische Ordnung auf oder die magnetischen Momente werden durch die Leitungselektronen abgeschirmt und damit unwirksam. Beides bewirkt, dass die Entropie bereits bei hoher Temperatur stark reduziert ist, was eine Entmagnetisierungskühlung zu tiefen Temperaturen unmöglich macht. „Unser Ziel war es deshalb, beide Effekte zu verhindern, um erstmals mit einem magnetischen Metall eine effektive Entmagnetisierungskühlung zu erreichen“, so Prof. Dr. Philipp Gegenwart, der Augsburger Leiter des Forschungsprojekts.

Ausbildung super-schwerer Elektronen bei sehr tiefen Temperaturen

Das neu entwickelte (Yb1-xScx)Co2Zn20 bringt die Voraussetzungen mit, um diese Eigenschaft zu erfüllen: Im Teilbild der beigefügten Grafik ist zu erkennen, dass in dieser Legierung die magnetischen Yb-Momente von Käfigen aus Zn-Atomen umgeben sind. Diese Anordnung ist entscheidend: Sie erschwert einerseits die Abschirmung der magnetischen Momente durch Leitungselektronen, andererseits aber auch die magnetische Ordnung der Momente. Hierdurch bilden sich super-schwere Elektronen bei sehr tiefen Temperaturen aus. Eine leichte Verdünnung der Yb-Plätze durch nicht-magnetische Sc-Atome bewirkt, dass Ordnung gerade am absoluten Nullpunkt einsetzt. Dieser „Quantenkritische Punkt“ im optimierten Material ermöglicht es im Prinzip, bis zum absoluten Nullpunkt zu kühlen.

Sogar bis unter 0.03 K

Die soeben in „Science Advances“ publizierten Daten zeigen, dass sich die von Gegenwart und seinem internationalen Team entwickelte neue Verbindung bei der adiabatischen Entmagnetisierung während des Herausfahrens des Magnetfelds extrem stark abkühlt – sogar bis unter die im Versuchsaufbau tiefste messbare Temperatur von 0.03 K. Kühleffizienz und Wärmeleitfähigkeit des neuen Materials sind damit signifikant besser als bei den bislang verwendeten magnetischen Salzen. Dass das neu entwickelte Material von großem Interesse ist, wenn es um die Verbesserung von Kühlapparaturen bei sehr tiefen Temperaturen geht, liegt also auf der Hand.

Publikation:
Y. Tokiwa, B. Piening, H. S. Jeevan, S. L. Bud’ko. P. C. Canfield, P. Gegenwart, Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling. Sci. Adv. 2, e1600835 (2016).


Ansprechpartner:
Prof. Dr. Philipp Gegenwart
Lehrstuhl für Experimentalphysik VI/EKM
Institut für Physik / Zentrum für Elektronische Korrelationen und Magnetismus
Universität Augsburg
86135 Augsburg
Telefon +49(0)821/598-3650
philipp.gegewart@physik.uni-augsburg.de

Weitere Informationen:

http://advances.sciencemag.org/content/advances/2/9/e1600835.full.pdf

Klaus P. Prem | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-augsburg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie