Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Licht zu Wasserstoff

07.10.2015

Eine organische Gerüstverbindung dient als Katalysator, um aus Wasser photolytisch Wasserstoff herzustellen

Der Energiebedarf der Menschheit steigt. Die Ressourcen der klassischen Energieträger sind dagegen endlich. Wasser und Sonnenlicht wiederum gibt es fast unbegrenzt.


Organische Netzwerkverbindungen (COFs) sind in der Lage, Wasserstoff zu produzieren. Das Modell der COF-Struktur ist farbcodiert, blau entspricht Stickstoff, grau Kohlenstoff und weiß Wasserstoff.

© Nature Communications / Macmillan Publishers / CC-BY-4.0

Wissenschaftler des Max-Planck-Instituts für Festkörperforschung in Stuttgart und von der Ludwig-Maximilians-Universität München haben nun ein Material geschaffen, das mittels Licht aus Wasser den vielseitigen Energieträger Wasserstoff erzeugt. Dieser polymere Photokatalysator ist chemisch robust. Zudem lässt sich die Rate der Wasserstoffproduktion über kleine strukturelle Veränderungen am Katalysator regulieren.

Es ist gar nicht so einfach, einen sogenannten Photokatalysator für die Spaltung von Wasser zu finden. Eine Substanz also, welche die Energie im Sonnenlicht direkt nutzt, um die Wasserstoff-Sauerstoff-Bindungen im Wasser aufzubrechen. In Labors gelingt dies bereits mit manchen Substanzen. Aber die Ausbeute ist häufig gering und der Weg in die industrielle Alltagspraxis noch fern.

Die Gruppe Nanochemie von Bettina Lotsch am Max-Planck-Institut für Festkörperforschung in Stuttgart und an der Ludwig-Maximilians-Universität (LMU) München hat nun – gemeinsam mit Theoretikern um Christian Ochsenfeld an der LMU – einen weiteren Ansatz entwickelt.

Die Forscher haben dabei sogenannte kovalente organische Netzwerkverbindungen (COFs, covalent organic frameworks) entworfen, die in der Lage sind, Wasserstoff zu produzieren.

COFs sind kristalline, hochmolekulare Polymere, bei denen bestimmte Ausgangsmoleküle zu sehr regelmäßigen, zwei- oder auch dreidimensionalen Strukturen vernetzt werden. Weil solche Netzwerkpolymere neben geeigneten optischen und elektronischen Eigenschaften eine relativ große Oberfläche aufweisen, zeigen sie auch gute katalytische Eigenschaften.

Wichtiger noch ist aber die molekulare Präzision, mit der solche Photokatalysatoren entworfen und optimiert werden können: Damit bilden COFs eine nützliche Plattform, um Materialeigenschaften gezielt variieren und damit den Prozess der Photokatalyse rational steuern zu können.

Elektronen auf Wanderschaft

Photokatalysatoren müssen ganz grundsätzlich über Elektronen verfügen, die sich mit sichtbarem Licht so anregen lassen, dass sie sich relativ frei bewegen und auf ein fremdes Atom oder Molekül übergehen können. Letztlich sind es diese Elektronen, die auf die Protonen im Wassermolekül übertragen werden – und somit elementaren Wasserstoff entstehen lassen.

Die in Stuttgart entwickelten COFs erfüllen all dies. Allerdings mussten die Forscher ihrem pulverförmigen Polymer noch Platin-Nanopartikel und einen sogenannten Elektronen-Donor zusetzen. „Die Platinteilchen wirken als Mikroelektroden, an denen die Elektronen vom COF zum Wasserstoff übergehen“, sagt Vijay Vyas, Wissenschaftler in der Nanochemiegruppe am Stuttgarter Max-Planck-Institut für Festkörperforschung.

„Und der Elektronen-Donor ist nötig, um die im COF zurückbleibende positive Ladung wieder auszugleichen“, so Vyas. Die Forscher gaben alle Zutaten in eine wässrige Lösung. Bestrahlten sie die Mixtur mit sichtbarem Licht, setzte die Bildung von Wasserstoff ein.

Für die Wissenschaftler war nicht nur erfreulich, dass die so geformten COFs in der Lage waren, Wasserstoff zu produzieren. Darüber hinaus gelang es ihnen, die Rate, mit der das Material Wasserstoff erzeugt, durch Einstellung der molekularen Geometrie der Netzwerke zu regulieren.

Zu diesem Zweck variierten sie gezielt das Ausgangsmaterial ­– eine Triphenylaryl-Verbindung –, aus dem sie den Katalysator herstellten. „Eine besonders hohe Wasserstoffausbeute erzielten wir, als die Ausgangssubstanz annähernd planar war“, sagt Vyas. Der Befund deckte sich auch mit parallel durchgeführten theoretischen Berechnungen. „Dies ist das erste Mal überhaupt, dass wir die photokatalytischen Eigenschaften eines COFs auf molekularer Ebene präzise einstellen können“, so der Max-Planck-Wissenschaftler.

In Zukunft wollen die Forscher diese Erkenntnisse nutzen, um ihre Substanzen gezielt weiterzuentwickeln. Ein Ziel ist dabei, den Mechanismus der Photokatalyse in diesen Systemen genauer zu verstehen und das komplexe Zusammenspiel der Einzelkomponenten weiter zu verfeinern.

Viele Einsatzmöglichkeiten

Trotz der ersten Erfolge sind auch diese Materialien noch weit davon entfernt, für eine industrielle Wasserstoffgewinnung aus Wasser und Sonnenlicht infrage zu kommen. Dafür müsste sich das Material beispielsweise kostengünstig in größeren Mengen herstellen lassen und über lange Zeiträume stabil Wasserstoff produzieren. Auch wenn diese und weitere Fragen noch offen sind, kann sich Vijay Vyas auf jeden Fall vorstellen, dass die Menschheit eines Tages in der Lage sein wird, Wasserstoff auf sehr effiziente Art einfach aus Licht, Wasser und einem Kohlenstoff-basierten Material herzustellen.

Dieser umweltfreundlich gewonnene Wasserstoff wäre dann für vieles einsetzbar. Schon heute gibt es Szenarien, ihn als Kraftstoff für Fahrzeuge oder für die Herstellung weiterer Energieträger zu nutzen. In Brennstoffzellen wiederum ließe sich mit Wasserstoff (und Sauerstoff) Strom erzeugen. Und auch der Wasserstoff, der derzeit in der Industrie für die Herstellung vieler wichtiger Chemikalien eingesetzt wird, ließe sich dann umweltfreundlich bereitstellen. Derzeit wird er vor allem aus fossilen Rohstoffen gewonnen.


Ansprechpartner

Bettina V. Lotsch
Chemistry Department, Ludwig-Maximilians-Universität München

Max-Planck-Institut für Festkörperforschung, Stuttgart
Telefon: +49 711 689-1610

E-Mail: b.lotsch@fkf.mpg.de


Originalpublikation
Vijay S. Vyas, Frederik Haase et.al.

A tunable azine covalent organic framework platform for visible light-induced hydrogen generation
Nature Communications, 6:8508, DOI: 10.1038/ncomms9508

Quelle

Bettina V. Lotsch | Max-Planck-Institut für Festkörperforschung, Stuttgart
Weitere Informationen:
https://www.mpg.de/9675673/photokatalysator-wasserstoffgewinnung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie