Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Hochdruck weltweit führend in der Magnetresonanz

03.07.2015

Physiker der Universität Leipzig haben einen Durchbruch bei der Kernspinresonanz (NMR) unter extremen Drücken erzielt. Den bisherigen Weltrekordwert, erzielt von Physikern der Harvard University (128.000 Atmosphären), konnten die Leipziger Forscher auf fast das Dreifache steigern. "Wir können jetzt Materialien mit den so wichtigen Methoden der Magnetresonanz bei Drücken bis über 300 Kilobar, also dem 300.000-fachen des normalen Luftdrucks analysieren", sagt der Leipziger Physik-Professor Jürgen Haase. "Unser Labor ist derzeit das führende NMR-Hochdrucklabor der Welt."

Erste Ergebnisse bei Drücken von bis zu 200.000 Atmosphären haben die Leipziger Physiker aktuell in der Fachzeitschrift "Journal of Magnetic Resonance" veröffentlicht. Zwischenzeitlich ist es dem Doktoranden Thomas Meier aus der Gruppe um Professor Haase gelungen, den Druck um weitere 150 Prozent zu erhöhen und erste NMR-Spektren aufzunehmen.


Das Herzstück für die Hochdruckzelle: der Stempel. Unter einem kleinen Stück Metall befindet sich ein Diamantstempel. Der Druck wird mithilfe des entgegengesetzten Diamanten (der sic

Foto: Universität Leipzig/Christian Hüller


Arbeiten mit Hochdruck: Thomas Meier hält eine Druckzelle unter einer Hydraulikpresse fest und belädt sie.

Foto: Universität Leipzig/Christian Hüller

Unter solch hohen Drücken verhalten sich scheinbar gut bekannte Materialien oft ganz anders als gedacht. "Nicht leitfähige Systeme werden zu Metallen, Metalle werden zu Isolatoren, viele Substanzen werden sogar supraleitend", berichtet Haase. "Auch für das Verständnis des Inneren unserer Erde sind entsprechende Untersuchungen hilfreich, weil hier ähnliche Drücke herrschen, die eben auch Festkörper stark beeinflussen."

Weltweit gebe es eine Reihe von Hochdruck-Zentren, darunter führende deutsche Labors in Bayreuth und Mainz, die Materie unter hohen Drücken untersuchen. "Allerdings ist die Zahl der Untersuchungsmethoden unter solch extremen Bedingungen stark eingeschränkt, und die Kernspinresonanz galt über viele Jahrzehnte hinweg als extrem schwierig bis unmöglich", sagte Haase.

Auf Grund des riesigen Potenzials der Kernspinresonanz haben dennoch Forscher-Gruppen vor allem in den USA immer wieder NMR-Experimente unter hohen Drücken vorgenommen.

Basierend auf einer Zusammenarbeit mit dem Cavendish Laboratory der University of Cambridge in England in 2009 offenbarten sich den NMR-Physikern in Leipzig neue Wege, NMR unter hohen Drücken zu realisieren. Darauf folgende mehrjährige Entwicklungsarbeiten in der Leipziger Physik und ihrer Werkstatt haben sich nun ausgezahlt.

"Wir haben ein neues Fenster mit Einblick in die moderne Festkörperphysik öffnen können", sagt Thomas Meier, der die Entwicklungen maßgeblich voran brachte. "Das wird die Hochdruck-Physik revolutionieren, weil die NMR einzigartige Informationen über chemische und elektronische Strukturen liefert. Jetzt können wir zum Beispiel sehen, wenn Materialien plötzlich leitend oder supraleitend werden."

Fachpublikation im Journal of Magnetic Resonance:
High-sensitivity NMR beyond 200,000 atmospheres of pressure
doi: 10.1016/j.jmr.2015.05.007

Ansprechpartner:

Prof. Dr. Jürgen Haase
Fakultät für Physik und Geowissenschaften
Telefon: +49 341 97-32601
E-Mail: j.haase@physik.uni-leipzig.de

Thomas Meier
Fakultät für Physik und Geowissenschaften
Telefon: +49 341 97-32609
E-Mail: thomas.meier@physik.uni-leipzig.de

Weitere Informationen:

http://www.sciencedirect.com/science/article/pii/S1090780715001159

Carsten Heckmann | Universität Leipzig

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau