Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit geballtem Licht auf Diamantatome

06.08.2015

Ein internationales Physikerteam hat mit Hilfe von Nanoröhrchen Laserpulse so modifiziert, dass ihre Kraft gezielter auf Kohlenstofffolien wirkt. Damit verbessern die Forscher die für den medizinischen Einsatz aussichtsreiche, lichtgetriebene Ionenstrahlung.

Licht-Materie-Wechselwirkung an Kohlenstofffolien könnte der Schlüssel zu einer neuen Ära in der Ionenbeschleunigung für medizinische Anwendungen sein.


Ein Laserstrahl trifft auf eine Schicht aus Nanoröhrchen. Die Nanoröhrchen fokussieren das Licht auf die dahinter liegende Kohlenstofffolie. Aus ihr werden so Ionen herausgelö

Isabella Cortrie

Ein internationales Team unter der Führung von Physikern des Exzellenzclusters Munich-Centre for Advanced Photonics (MAP) an der Ludwig-Maximilians-Universität (LMU) und am Max-Planck-Institut für Quantenoptik hat nun die aussichtsreiche Technik der Lichtdruck-Beschleunigung weiter verbessert. Mit ihr gewinnt man aus extrem starken Laserblitzen Ionenpulse.

Die Forscher haben erstmals die hauchdünnen Folien aus diamantartigem Kohlenstoff mit Nanoröhrchen bedampft. Sie fungieren bei Bestrahlung mit starken Laserpulsen als Linse und fokussieren den Laser stärker als bisher auf die Kohlenstofffolie. Die Folge davon ist, dass Ionen weitaus höhere Energien aufnehmen als bisher. Damit werden erste Strahlenexperimente mit Kohlenstoff-Ionen an Zellen möglich und ein medizinischer Einsatz der lichtgetriebenen Ionenstrahlung greifbar.

Licht verfügt über enorme Kräfte. Treffen etwa hochintensive Laserpulse auf hauchdünne, diamantartige Folien aus Kohlenstoff, lösen sie Ionen heraus und beschleunigen diese auf rund zehn Prozent der Lichtgeschwindigkeit.

Es entsteht Ionenstrahlung, getrieben durch den Strahlungsdruck der ultrakurzen Laserpulse. Ionenstrahlung kann zur Behandlung von Tumoren in der Krebstherapie eingesetzt werden, wenn sie über genug Energie verfügt. Aktuell wird diese hochenergetische Strahlung von großen, kostenintensiven Beschleunigern erzeugt.

Die Lasertechnologie ist noch nicht in der Lage, eine ebenbürtige Strahlung zu erzeugen. Aber sie hat das Potential die notwendige Technologie für den medizinischen Einsatz der Ionenstrahlung künftig kostengünstiger und platzsparender zur Verfügung zu stellen.

Um dies zu erreichen haben die Laserphysiker zwei Optionen: zum einen müssen sie die Intensität der Laserpulse erhöhen. Und zum anderen müssen sie ihre Intensität so kompakt zusammenballen, dass der Puls extrem fokussiert und mit voller Wucht auf die Kohlenstofffolien auftrifft. Letzteres haben nun die MAP-Physiker getan.

Die auf die Kohlenstofffolien auftreffenden Laserpulse dauern nämlich rund 50 Femtosekunden (eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde) und bestehen aus rund 20 Lichtwellenschwingungen. Das heißt: die in dem Puls gespeicherte elektromagnetischen Kräfte kommen nicht geballt zu einem bestimmten Zeitpunkt auf der Kohlenstofffolie an, sondern der Lichtdruck auf die Ionen wird verhältnismäßig langsam gesteigert bis er ein Maximum erreicht. Erst dann schlägt er die Ionen aus der Folie heraus. Über den gesamten Prozess geht viel Energie verloren.

Im MAP-Service-Centre wurden nun die diamantartigen Kohlenstofffolien, die Grundlage für die ersten Studien zur Strahlungsdruckbeschleunigung vor fünf Jahren waren, mit einer Mikrometer dünnen Schicht aus Nanoröhrchen bedampft. Diese Röhrchen liegen ungeordnet auf der Folie, wie etwa Stroh in einem Heuhaufen.

Die Röhrchen haben zur Folge, dass die Leistung des auftreffenden Laserpulses beim Durchgang so gebündelt wird, dass ihre Kraft augenblicklich auf die dahinter liegende Kohlenstofffolie wirkt und sich nicht erst langsam aufbaut. Zudem fokussieren die Nanoröhrchen die Lichtpulse stark auf einen „Brennpunkt“ auf der Folie.

Beide Effekte haben zur Folge, dass die aus der Kohlenstofffolie herausgelösten Ionen über eine deutlich höhere Energie verfügen als bisher (rund 200 Megaelektronenvolt, MeV). Die Experimente wurden im Rahmen des Laserlab-Europe-Programms am ASTRA-Gemini Laser des Rutherford Appleton Laboratory’s durchgeführt. In der Kollaboration arbeiteten Forscher aus Deutschland, Großbritannien, Spanien und China.

Mit der verbesserten, lichtgetriebenen Ionenstrahlung werden nun erstmals Experimente mit Kohlenstoff-Ionen an Zellen möglich. Um lichtgetriebene Ionenstrahlung zur Bekämpfung von Tumoren im menschlichen Körper einzusetzen, werden jedoch Energien von mindestens einem GeV (Gigaelektronenvolt) benötigt, also rund fünfmal so viel wie aktuell möglich ist.

Denn die Strahlung muss erst gesundes Gewebe durchdringen bis sie einen Tumor erreicht. Dieses Ziel ist nicht utopisch: Auf den Grundlagen des Forschungsverbunds des Munich-Centres for Advanced Photonics entsteht auf dem Forschungscampus in Garching das Centre for Advanced Laser Applications (CALA).

Das Laserforschungszentrum wird ein neues Kurzpulslasersystem, den ATLAS 3000, beherbergen. Mit ihm werden erstmals Laserpulse erzeugt, die über eine Leistung von drei Petawatt verfügen. Die daraus erzeugten Laserpulse in Kombination mit der verbesserten Nanoröhrchen-Kohlenstofffolien-Technologie lassen einen medizinischen Einsatz von lichtgetriebener Ionenstrahlung näher rücken.

Originalpublikation:
J. H. Bin, W. J. Ma, H. Y. Wang, M. J. V. Streeter, C. Kreuzer, D. Kiefer, M. Yeung, S. Cousens, P. S. Foster, B. Dromey, X. Q. Yan, R. Ramis, J. Meyer-ter-Vehn, M. Zepf, and J. Schreiber
Ion Acceleration Using Relativistic Pulse Shaping in Near-Critical-Density Plasmas
Phys. Rev. Lett. 115, 064801 (2015), 3 August 2015,
doi: 10.1103/PhysRevLett.115.064801

Weitere Informationen erhalten Sie von:
Prof. Jörg Schreiber
Ludwig-Maximilians-Universität München (LMU)
Fakultät für Physik, Lehrstuhl für Experimentalphysik - Medizinische Physik
Am Coulombwall 1, 85748 Garching, Germany
Tel.: +49 (0)89 289-54025
Email: Joerg.Schreiber@lmu.de

Karolina Schneider | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.munich-photonics.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung
21.02.2017 | Forschungszentrum Jülich

nachricht Sternenmusik aus fernen Galaxien
21.02.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Der Lkw der Zukunft kommt ohne Fahrer aus

21.02.2017 | Veranstaltungen

Physikerinnen und Physiker diskutieren in Bremen über aktuelle Grenzen der Physik

21.02.2017 | Veranstaltungen

Kniffe mit Wirkung in der Biotechnik

21.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit den Betriebsräten Sozialpläne

21.02.2017 | Unternehmensmeldung

Der Lkw der Zukunft kommt ohne Fahrer aus

21.02.2017 | Veranstaltungsnachrichten

Zur Sprache gebracht: Und das intelligente Haus „hört zu“

21.02.2017 | Messenachrichten