Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Diamant und Dampfzelle zur Abbildung von Mikrowellenfeldern

10.11.2015

Die Abbildung von Mikrowellenfeldern gewinnt zunehmend an Bedeutung, da Mikrowellen für die moderne Kommunikationstechnologie unerlässlich sind und in der medizinischen Diagnostik eingesetzt werden können.

Forscher vom Swiss Nanoscience Institute und vom Departement Physik der Universität Basel haben nun unabhängig voneinander zwei neue Methoden entwickelt, um Mikrowellenfelder abzubilden. Beide Verfahren machen sich die Änderung von Spinzuständen zunutze, die durch Mikrowellenfelder ausgelöst werden, wie die Forscher in der Fachzeitschrift «New Journal of Physics» berichten.


Durch Messungen der Spinänderung von Atomen oder Elektronen lassen sich Mikrowellenfelder genauestens abbilden.

Universität Basel, Departement Physik

Mikrowellen sorgen nicht nur schnell für warme Mahlzeiten, sondern sind auch für die drahtlose Kommunikation von Laptops und Mobiltelefonen unerlässlich, in denen Mikrowellenschaltkreise für die Übertragung und Dekodierung von Information sorgen. Als neues Feld entwickelt sich zurzeit auch ihr Einsatz in der Medizindiagnostik, da beispielsweise Krebszellen Mikrowellen anders absorbieren als gesundes Gewebe.

Um ihren Einsatz in den Grundlagenwissenschaften, der Kommunikationstechnologie und auch in der Diagnostik weiter voranzutreiben, ist es wichtig, die elektromagnetischen Mikrowellenfelder genau untersuchen zu können. Doch gab es bisher kaum einfache und schnelle Methoden, die genaue Bilder der Mikrowellenfelder liefern.

Veränderter Spin durch Mikrowellenfeld

Traditionell funktioniert die Abbildung elektromagnetischer Felder über miniaturisierte Antennen. Diese müssen allerdings aufwendig kalibriert werden und können die zu messenden Felder beeinflussen. Die Gruppen von Professor Philipp Treutlein und Georg-H.-Endress-Professor Patrick Maletinsky an der Universität Basel nutzen deshalb keine Antennen, sondern den Eigendrehimpuls (Spin) von Atomen und einzelnen Elektronen, um Mikrowellenfelder abzubilden.

Der Spin eines Elektrons oder eines Atoms ändert sich nämlich in Anwesenheit eines Mikrowellenfeldes, wobei die Zahl der Rotationen von der Mikrowellenfeldstärke abhängt. Da die Spins mikroskopisch klein sind, beeinflusst die Messung der Spinveränderung das zu untersuchende Mikrowellenfeld nahezu nicht.

Zahlreiche Rubidium-Atome

Die Gruppe von Philipp Treutlein verwendet zur Abbildung der Mikrowellenfelder eine dünne Glaszelle, die mit Rubidium-Dampf gefüllt ist. Wird nahe dieser Glaszelle ein Mikrowellenfeld angelegt, ändert sich der Spinzustand aller Rubidium-Atome in der Messzelle. Die Rotation dieses Spins ist abhängig von der Feldstärke der angelegten Mikrowellen.

Mit einer speziell entwickelten Kamera halten die Forschenden die Zustandsänderungen des Spins der Rubidium-Atome fest. Innerhalb weniger Millisekunden erhalten sie so ein zweidimensionales Bild der gesamten Messzelle, aus dem sich das Mikrowellenfeld mit Mikrometer-Auflösung errechnen lässt. Mit diesem Verfahren können die Forscher auch kurze Filme produzieren.

Einzelne Elektronen

Das Team um Professor Patrick Maletinsky misst die Spinänderung einzelner Elektronen in Stickstoff-Vakanzzentren von Diamanten, um das Magnetfeld der Mikrowellen abzubilden. Dazu produzieren die Forschenden zunächst eine winzig kleine Spitze aus einkristallinem Diamant.

Dieser Diamant wird so modifiziert, dass in dessen Kristallgitter einige Kohlenstoffatome durch Stickstoffatome ersetzt werden und sich gleich daneben eine Leerstelle (Stickstoff-Vakanzzentrum) befindet. Diese Spitze wird dann in ein speziell entwickeltes Mikroskop eingebaut und in unmittelbare Nähe eines Mikrowellenfeldes gebracht.

Wie bei den Resultaten aus der Treutlein-Gruppe ist die Rotationsgeschwindigkeit des Elektronenspins im Stickstoff-Vakanzzentrum proportional zur Mikrowellen-Feldstärke. Die gesamte Probe wird dann Punkt für Punkt analysiert und das Mikrowellenfeld aus der Spinänderung errechnet. Die Analyse dauert aufgrund des Rasterprozesses etwa eine Stunde. Sie liefert hochaufgelöste Bilder im Nanometerbereich – eine Million mal kleiner als die Wellenlänge der Mikrowellen.

Komplementäre Methoden

Die beiden unabhängig voneinander entwickelten Methoden ergänzen sich bezüglich Messgeschwindigkeit und örtlicher Auflösung. Es ist daher durchaus vorstellbar, dass bei der Untersuchung eines Mikrowellenschaltkreises zuerst die atomare Dampfzelle eingesetzt werden könnte, um einen schnellen Überblick über das Mikrowellenfeld zu gewinnen.

Wenn dann bestimmte Bereiche besonders interessant erscheinen, könnten diese mithilfe der Stickstoff-Vakanzzentren genauestens untersucht werden. Die Kombination dieser beiden Methoden könnte daher in Zukunft weitreichende Folgen für die Entwicklung neuartiger Mikrowellen-Komponenten mit sich bringen.

Originalbeiträge
Andrew Horsley, Guan-Xiang Du and Philipp Treutlein
Widefield microwave imaging in alkali vapor cells with sub-100 μm resolution
New Journal of Physics 17, 112002 (2015), doi: 10.1088/1367-2630/17/11/112002

Patrick Appel, Marc Ganzhorn, Elke Neu and Patrick Maletinsky
Nanoscale microwave imaging with a single electron spin in diamond
New Journal of Physics 17, 112001 (2015), doi: 10.1088/1367-2630/17/11/112001

Weitere Auskünfte
Prof. Patrick Maletinsky, Universität Basel, Departement Physik, Tel. +41 61 267 37 63, E-Mail: patrick.maletinsky@unibas.ch

Prof. Philipp Treutlein, Universität Basel, Departement Physik, Tel. +41 61 267 37 66, E-Mail: philipp.treutlein@unibas.ch

Weitere Informationen:

https://www.unibas.ch/de/Aktuell/News/Uni-Research/Mit-Diamant-und-Dampfzelle-zu...

Reto Caluori | Universität Basel

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blasen im Pulsarwind schlagen Funken
22.11.2017 | Max-Planck-Institut für Kernphysik

nachricht Eine Nano-Uhr mit präzisen Zeigern
21.11.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterien als Schrittmacher des Darms

22.11.2017 | Biowissenschaften Chemie

Ozeanversauerung schädigt Miesmuscheln im Frühstadium

22.11.2017 | Biowissenschaften Chemie

Die gefrorenen Küsten der Arktis: Ein Lebensraum schmilzt davon

22.11.2017 | Geowissenschaften