Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Antineutrinos Kernreaktoren überwachen

24.04.2014

Bei der Überwachung von Kernreaktoren ist die Internationale Atomenergiebehörde (IAEA) in wichtigen Fragen auf die Angaben der Betreiber angewiesen.

In Zukunft könnten Antineutrino-Detektoren eine unabhängige Möglichkeit der Überprüfung liefern. Doch bisher fehlte das Antineutrino-Spektrum der Spaltprodukte von Uran-238. Physiker der Technischen Universität München (TUM) haben diese Lücke nun mit Hilfe von schnellen Neutronen aus der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) geschlossen.

Bei der Spaltung von Kernbrennstoffen wie Plutonium oder Uran werden neben Neutronen auch Antineutrinos frei. Diese sind ebenfalls elektrisch neutral, aber nicht sehr reaktionsfreudig, weshalb sie sich nur mit riesigen Detektoren nachweisen lassen. Inzwischen werden jedoch Detektoren entwickelt, die nur noch die Größe eines Kubikmeters haben. Sie können Antineutrinos aus dem Reaktorkern messen – eine Methode, an der die IAEA sehr interessiert ist.

Prototypen dieser Detektoren existieren bereits und nehmen in Abständen von etwa zehn Metern zu Reaktoren Daten auf. Aus der Analyse von Energie und Rate der Antineutrinos lassen sich Änderungen in der Zusammensetzung der Kernbrennstoffe im Reaktor ermitteln - wie etwa das Entfernen von kernwaffenfähigem Plutonium-239. Die IAEA wäre damit nicht mehr auf die Aussagen der Reaktorbetreiber angewiesen.

Genaues Antineutrino-Spektrum von Uran-238 bestimmt

Bereits in den 1980er-Jahren wurden die Antineutrino-Spektren von drei der vier Haupt-Kernbrennstoffe, Uran-235, Plutonium-239 und -241 bestimmt. Bisher fehlte jedoch das genaue Antineutrino-Spektrum des vierten verwendeten Kernbrennstoffes Uran-238, der etwa zehn Prozent des gesamten Antineutrino-Flusses ausmacht. Er war nur durch ungenaue theoretische Berechnungen abgeschätzt worden und beschränkte somit die Präzision der Antineutrino-Vorhersagen.

Dr. Nils Haag am Lehrstuhl für Experimentelle Astroteilchenphysik der TU München entwickelte nun am FRM II einen Messaufbau, mit dem er das fehlende Spektrum von Uran-238 bestimmen konnte. „Ich benötigte einen hohen Fluss von schnellen Neutronen, um das Uran-238 spalten zu können“, sagt der Physiker. Seinen Versuchsaufbau stellte er deshalb an die Radiographie- und Tomographiestation NECTAR des FRM II, die schnelle Neutronen zur Verfügung stellt.

Ein zweiter Detektor eliminiert unerwünschte Messsignale

In einer Folie aus Uran-238 erzeugten die Neutronen Kernspaltungen. Die radioaktiven Zerfallsprodukte emittierten in der Folge Elektronen und Antineutrinos. Die Elektronen wurden mit einem Szintillator untersucht – einem Kunststoffblock, der die kinetische Energie der Elektronen in Licht umwandelt. Dieses übersetzte ein Photomultiplier in elektrische Signale.

Bei den Kernzerfällen entsteht aber auch Gammastrahlung, die im Szintillator unerwünschte Messsignale erzeugt. Deswegen platzierte Haag einen zweiten Detektor direkt vor dem Szintillator: eine sogenannte Vieldrahtkammer. Da in diesem Gasdetektor nur geladene Teilchen wie Elektronen ein Signal auslösen, konnte Haag den Anteil der Gammastrahlung bestimmen. Aus der somit Untergrund-freien Messung der Elektronen leitete Haag das Antineutrino-Spektrum ab.

Methode erlaubt bessere Überwachung von Kernreaktoren

Die Messung des Antineutrino-Spektrums kann dazu verwendet werden, den Status, die Leistung und sogar die Zusammensetzung von Reaktorkernen zu überwachen. „Unsere Ergebnisse erlauben es nun, mit signifikant höherer Genauigkeit vorauszuberechnen, welches Antineutrino-Spektrum ein Reaktor mit der vom Betreiber angegebenem Brennstoffzusammensetzung haben müsste“, erklärt Dr. Nils Haag. „Abweichungen zwischen dem erwarteten Signal des Reaktors und den Messdaten der Antineutrino-Detektoren können damit aufgedeckt werden.“

Eingebettet ist die Entwicklung der Methode in Grundlagenforschung zum Phänomen der „sterilen“ Antineutrinos. Aus dem Vergleich bisheriger Messungen und Vorhersagen von Reaktor-Antineutrino-Spektren gab es nämlich Hinweise darauf, dass einige Antineutrinos kurz nach ihrer Produktion „steril“ werden. Sie könnten dann nicht mehr mit Materie in Wechselwirkung treten. Ein besseres Verständnis dieser Effekte würde unser Wissen über die elementaren physikalischen Prozesse erweitern.

Die Arbeit wurde mit Mitteln der Deutschen Forschungsgemeinschaft (DFG) und des DFG-Exzellenzclusters „Origin and Structure of the Universe“ der TUM gefördert.

Publikation:

Experimental Determination of the Antineutrino Spectrum of the Fission Products of U238
N. Haag, A. Gütlein, M. Hofmann, L. Oberauer, W. Potzel, K. Schreckenbach, and F. M. Wagner
Phys. Rev. Lett. 112, 122501 (2014), DOI: 10.1103/PhysRevLett.112.122501

Kontakt:

Dr. Nils Haag
Physik-Department
Lehrstuhl für experimentelle Physik und Astroteilchenphysik (E15)
Technische Universität München
James-Franck-Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 12524 – E-Mail: Nils.Haag@ph.tum.de

Weitere Informationen:

http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/31486/ Pressemitteilung im Web
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.122501 Link zur Originalstudie
http://www.e15.ph.tum.de/ Homepage des Lehrstuhls
https://mediatum.ub.tum.de/?id=1207662#1207662 Hochauflösende Bilder zum Download

Dr. Ulrich Marsch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften