Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Antineutrinos Kernreaktoren überwachen

24.04.2014

Bei der Überwachung von Kernreaktoren ist die Internationale Atomenergiebehörde (IAEA) in wichtigen Fragen auf die Angaben der Betreiber angewiesen.

In Zukunft könnten Antineutrino-Detektoren eine unabhängige Möglichkeit der Überprüfung liefern. Doch bisher fehlte das Antineutrino-Spektrum der Spaltprodukte von Uran-238. Physiker der Technischen Universität München (TUM) haben diese Lücke nun mit Hilfe von schnellen Neutronen aus der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) geschlossen.

Bei der Spaltung von Kernbrennstoffen wie Plutonium oder Uran werden neben Neutronen auch Antineutrinos frei. Diese sind ebenfalls elektrisch neutral, aber nicht sehr reaktionsfreudig, weshalb sie sich nur mit riesigen Detektoren nachweisen lassen. Inzwischen werden jedoch Detektoren entwickelt, die nur noch die Größe eines Kubikmeters haben. Sie können Antineutrinos aus dem Reaktorkern messen – eine Methode, an der die IAEA sehr interessiert ist.

Prototypen dieser Detektoren existieren bereits und nehmen in Abständen von etwa zehn Metern zu Reaktoren Daten auf. Aus der Analyse von Energie und Rate der Antineutrinos lassen sich Änderungen in der Zusammensetzung der Kernbrennstoffe im Reaktor ermitteln - wie etwa das Entfernen von kernwaffenfähigem Plutonium-239. Die IAEA wäre damit nicht mehr auf die Aussagen der Reaktorbetreiber angewiesen.

Genaues Antineutrino-Spektrum von Uran-238 bestimmt

Bereits in den 1980er-Jahren wurden die Antineutrino-Spektren von drei der vier Haupt-Kernbrennstoffe, Uran-235, Plutonium-239 und -241 bestimmt. Bisher fehlte jedoch das genaue Antineutrino-Spektrum des vierten verwendeten Kernbrennstoffes Uran-238, der etwa zehn Prozent des gesamten Antineutrino-Flusses ausmacht. Er war nur durch ungenaue theoretische Berechnungen abgeschätzt worden und beschränkte somit die Präzision der Antineutrino-Vorhersagen.

Dr. Nils Haag am Lehrstuhl für Experimentelle Astroteilchenphysik der TU München entwickelte nun am FRM II einen Messaufbau, mit dem er das fehlende Spektrum von Uran-238 bestimmen konnte. „Ich benötigte einen hohen Fluss von schnellen Neutronen, um das Uran-238 spalten zu können“, sagt der Physiker. Seinen Versuchsaufbau stellte er deshalb an die Radiographie- und Tomographiestation NECTAR des FRM II, die schnelle Neutronen zur Verfügung stellt.

Ein zweiter Detektor eliminiert unerwünschte Messsignale

In einer Folie aus Uran-238 erzeugten die Neutronen Kernspaltungen. Die radioaktiven Zerfallsprodukte emittierten in der Folge Elektronen und Antineutrinos. Die Elektronen wurden mit einem Szintillator untersucht – einem Kunststoffblock, der die kinetische Energie der Elektronen in Licht umwandelt. Dieses übersetzte ein Photomultiplier in elektrische Signale.

Bei den Kernzerfällen entsteht aber auch Gammastrahlung, die im Szintillator unerwünschte Messsignale erzeugt. Deswegen platzierte Haag einen zweiten Detektor direkt vor dem Szintillator: eine sogenannte Vieldrahtkammer. Da in diesem Gasdetektor nur geladene Teilchen wie Elektronen ein Signal auslösen, konnte Haag den Anteil der Gammastrahlung bestimmen. Aus der somit Untergrund-freien Messung der Elektronen leitete Haag das Antineutrino-Spektrum ab.

Methode erlaubt bessere Überwachung von Kernreaktoren

Die Messung des Antineutrino-Spektrums kann dazu verwendet werden, den Status, die Leistung und sogar die Zusammensetzung von Reaktorkernen zu überwachen. „Unsere Ergebnisse erlauben es nun, mit signifikant höherer Genauigkeit vorauszuberechnen, welches Antineutrino-Spektrum ein Reaktor mit der vom Betreiber angegebenem Brennstoffzusammensetzung haben müsste“, erklärt Dr. Nils Haag. „Abweichungen zwischen dem erwarteten Signal des Reaktors und den Messdaten der Antineutrino-Detektoren können damit aufgedeckt werden.“

Eingebettet ist die Entwicklung der Methode in Grundlagenforschung zum Phänomen der „sterilen“ Antineutrinos. Aus dem Vergleich bisheriger Messungen und Vorhersagen von Reaktor-Antineutrino-Spektren gab es nämlich Hinweise darauf, dass einige Antineutrinos kurz nach ihrer Produktion „steril“ werden. Sie könnten dann nicht mehr mit Materie in Wechselwirkung treten. Ein besseres Verständnis dieser Effekte würde unser Wissen über die elementaren physikalischen Prozesse erweitern.

Die Arbeit wurde mit Mitteln der Deutschen Forschungsgemeinschaft (DFG) und des DFG-Exzellenzclusters „Origin and Structure of the Universe“ der TUM gefördert.

Publikation:

Experimental Determination of the Antineutrino Spectrum of the Fission Products of U238
N. Haag, A. Gütlein, M. Hofmann, L. Oberauer, W. Potzel, K. Schreckenbach, and F. M. Wagner
Phys. Rev. Lett. 112, 122501 (2014), DOI: 10.1103/PhysRevLett.112.122501

Kontakt:

Dr. Nils Haag
Physik-Department
Lehrstuhl für experimentelle Physik und Astroteilchenphysik (E15)
Technische Universität München
James-Franck-Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 12524 – E-Mail: Nils.Haag@ph.tum.de

Weitere Informationen:

http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/31486/ Pressemitteilung im Web
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.122501 Link zur Originalstudie
http://www.e15.ph.tum.de/ Homepage des Lehrstuhls
https://mediatum.ub.tum.de/?id=1207662#1207662 Hochauflösende Bilder zum Download

Dr. Ulrich Marsch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten
23.01.2018 | Universität Basel

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

Die Flugerprobung des Airbus A320neo

23.01.2018 | Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

23.01.2018 | Physik Astronomie

Neue Formeln zur Erforschung der Altersstruktur nicht-linearer dynamischer Systeme

23.01.2018 | Interdisziplinäre Forschung

Dreifachblockade am Glioblastom

23.01.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics