Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Minischeiben für Datenspeicher

09.03.2011
Schräge Außenkanten an winzigen Magnetscheiben könnten zu einem Durchbruch in der Datenverarbeitung führen.

„Dadurch entstehen Strukturen, die man anders bisher gar nicht erhalten konnte“, erklärt der Materialforscher Jeffrey McCord vom Helmholtz-Zentrum Dresden-Rossendorf. Der Doktorand Norbert Martin verwirklichte die schrägen Kanten im Laborexperiment. So entstehen Magnetwirbel mit dem Durchmesser von einem Drittel eines Tausendstel Millimeters. Diese könnten helfen, große Datenmengen auf immer kleineren Flächen zu speichern und mit möglichst wenig Energie zu bearbeiten.


Abgeschrägte Kanten ermöglichen kleinste Magnetwirbel auf den Nano-Scheiben (eine Scheibe hat einen Radius von 150 Nanometer).
S. Münster, Kunstkosmos

In den Mini-Scheiben der Forscher ordnen sich winzige Magnete in Wirbeln an. Dabei können die einzelnen Magnete im oder gegen den Uhrzeigersinn um die Scheibe führen. Diese beiden unterschiedlichen Zustände können von der Datenverarbeitung genauso wie in herkömmlichen Computern die Schaltungen „elektrischer Strom an“ oder „aus“ genutzt werden. Im Unterschied zu herkömmlichen Arbeitsspeichern aber lassen sich die Magnetwirbel mit einer Spin genannten Eigenschaft der Elektronen und einem viel geringeren Stromverbrauch umschalten.

Im äußeren Bereich des Wirbels liegen die Magnetteilchen zweier benachbarter Kreise parallel zueinander, während in der Mitte der Scheibe der Platz für dieses parallele Liegen nicht reicht. Da jede andere Anordnung aber viel Energie kosten würde, drehen sich die Magnetteilchen in der Mitte aus der Ebene der Scheibe heraus und können so wieder energiesparend nebeneinander liegen.

Das Ganze funktioniert nur gut, wenn die einzelnen Magnetwirbel ein gutes Stück Abstand voneinander halten oder relativ groß sind. Computerhersteller und die Benutzer aber wollen möglichst kleine Datenverarbeitungseinheiten, bei denen konsequenterweise auch die Magnetwirbel klein sind und eng nebeneinander liegen. Dann aber beeinflussen sich die Magnetkreise gegenseitig, weil sich die Mini-Scheiben gegenseitig magnetisch anziehen. Für einen Arbeitsspeicher wären das kaum gute Voraussetzungen.

Norbert Martin und Jeffrey McCord lassen daher die äußeren Kanten der kleinen Magnetscheiben nicht senkrecht zur Ebene der Scheibe, sondern schräg verlaufen. Dadurch werden am Rand die winzigen Magnetteilchen ein wenig in Richtung der Schräge abgelenkt. Diese Orientierung wiederum lässt das senkrecht auf der Ebene der Scheibe entstehende Magnetfeld bevorzugt in die Richtung der Schräge entstehen. Das aber kostet viel weniger Energie als die zufällige Orientierung dieses Magnetfeldes bei senkrechten Außenkanten der Scheibe. Deshalb entstehen die Magnetwirbel bei schrägen Kanten einfacher.

Um diese herzustellen, gibt Norbert Martin winzige Glaskügelchen mit einem Durchmesser von 0,30 Tausendstel Millimeter (300 Nanometer) auf eine dünne Magnetschicht. Unter bestimmten Bedingungen liegen diese Glaskugeln alle nebeneinander und bilden winzige Sechsecke mit kleinen Lücken dazwischen. Feuern die Wissenschaftler mit Argon-Ionen auf diese Schicht, schlagen diese atomaren und elektrisch geladenen Geschosse durch die Lücken zwischen den Glaskugeln aus der darunter liegenden Magnetschicht Partikel heraus. Die Anordnung der Glaskugeln wirkt so als Schablone: Unter jeder einzelnen Glaskugel bleibt eine magnetische Scheibe stehen, während unter den Lücken die Magnetschicht verschwindet. Im Laufe des Beschusses aber splittern die Argon-Ionen auch Teile von den Glaskugeln ab, die so immer kleiner werden und am Ende der Prozedur statt 300 nur noch 260 Nanometer Durchmesser haben. Dadurch erreichen die Argon-Ionen unter den Glaskugeln auch etwas weiter innen liegende Bereiche der darunter gerade entstehenden Magnetscheiben. Weil dort der Beschuss kürzer dauert, splittert innen auch weniger Material ab. Wie von selbst entsteht so die gewünschte schräge Kante.

Die Originalarbeit ist in Advanced Functional Materials, Band 21, Seite 891 veröffentlicht (DOI: 10.1002/adfm.201002140). Die Ergebnisse entstanden zu großen Teilen am Leibniz-Institut für Festkörper- und Werkstoffforschung (IFW) Dresden, wo die beiden Wissenschaftler vor ihrem Wechsel an das HZDR arbeiteten. Beide Institute kooperieren seit langem auf dem Gebiet der Magnetismus-Forschung.

Weitere Informationen
Dr. Jeffrey McCord
Institut für Ionenstrahlphysik und Materialforschung
Tel. 0351 260-3709
j.mccord@hzdr.de
Pressekontakt
Dr. Christine Bohnet
Presseprecherin
Tel. 0351 260-2450 oder 0160 969 288 56
c.bohnet@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf
Bautzner Landstr. 400
01328 Dresden
Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) hat das Ziel, langfristig ausgerichtete Spitzenforschung auf gesellschaftlich relevanten Gebieten zu leisten. Folgende Fragestellungen stehen hierbei im Fokus:

• Wie verhält sich Materie unter dem Einfluss hoher Felder und in kleinsten Dimensionen?

• Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?

• Wie schützt man Mensch und Umwelt vor technischen Risiken?

Zur Beantwortung dieser wissenschaftlichen Fragen werden sechs Großgeräte mit teils einmaligen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.

Das HZDR ist seit 1.1.2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat drei Standorte in Dresden, Leipzig und Grenoble und beschäftigt rund 800 Mitarbeiter – davon 370 Wissenschaftler inklusive 120 Doktoranden.

Dr. Christine Bohnet | Helmholtz-Zentrum
Weitere Informationen:
http://www.hzdr.de
http://www.ifw-dresden.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften