Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Miniaturisierte Laser können Quantenlicht emittieren

09.07.2009
Physiker der TU Dortmund entwickeln Detektor, der einzelne Photonen mit Billionstel Sekunden Zeitauflösung detektieren kann

Seit mehr als 100 Jahren ist bekannt, dass Licht in kleinen Paketen, den so genannten Photonen, daher kommt. Die Entdeckung dieser Quantisierung des Lichtfelds hat ein neues Gebiet der Physik eröffnet, die Quantenoptik.

Einer Ihrer Pioniere, der Nobelpreisträger Roy Glauber, schlug in den 60er Jahren vor, Lichtquellen anhand der zeitlichen Abfolge der von ihnen emittierten Photonen zu charakterisieren. Doch die Umsetzung dieser Idee war bislang stark eingeschränkt.

So spielt sich in modernen Lasern die Lichtemission auf einer Zeitskala bis hinab zu einer Billionstel Sekunde ab, 1000-mal schneller als bisher detektiert werden konnte. Einer Arbeitsgruppe der Fakultät Physik der TU Dortmund unter der Leitung von Prof. Manfred Bayer ist jetzt zusammen mit Kollegen aus Bremen und Würzburg ein entscheidender Durchbruch gelungen: In mehrjähriger Arbeit wurde der weltweit erste Detektor entwickelt, der die hierfür erforderliche Zeitauflösung aufweist.

Zunächst konnte mit diesem Detektor gezeigt werden, dass Licht die von Roy Glauber theoretisch vorhergesagten statistischen Eigenschaften aufweist. Dazu wurde eine gewöhnliche Laserstruktur zur Lichtemission angeregt. Erfolgt diese Anregung schwach, so emittiert die Struktur noch klassisches Licht. Regt man sie dagegen stärker an, so geht der Laser über seine Schwelle, d.h. er emittiert dann Laserlicht. Dies konnte in der zeitlichen Abfolge der Photonen eindeutig nachgewiesen werden.

Bei Untersuchungen von miniaturisierten Lasern kamen die Dortmunder Physikerinnen und Physiker Marc Assmann, Thorsten Berstermann, Franziska Veit und Manfred Bayer jedoch zu überraschenden Ergebnissen.

Eines der Ziele der weltweit intensiven Bemühungen um die Miniaturisierung von Lasern ist die Realisierung eines schwellenfreien Lasers, der Strom vollständig in Laserlicht umwandeln könnte, also ideal energieeffizient wäre. Dem Dortmunder Team standen für Untersuchungszwecke miniaturisierte Laser aus Bremen zu Verfügung, die diesem Ziel sehr nahe kommen und international den Spitzenstandard darstellen.

Sie trieben solche Laser über die Schwelle, und die Messungen mit dem Detektor zeigten, dass die zeitliche Abfolge von zwei Photonen nicht wie erwartet von der klassischen Lichts zu der von Laserlicht übergeht. Vielmehr kommt es bei diesem Übergang zur Emission von Quantenlicht: Die Photonen gehen sich aus dem Weg, d.h. die Wahrscheinlichkeit, zwei Photonen unmittelbar hintereinander anzutreffen, ist reduziert im Vergleich zu großen Versatzzeiten. Beim Laserlicht dagegen ist jede beliebige zeitliche Verzögerung zwischen zwei Photonen gleich wahrscheinlich, während beim klassischen Licht die Photonen bevorzugt zusammen ankommen.

Als die Dortmunder Experimentalphysiker ihre Ergebnisse zum ersten Mal ihren Bremer Kollaborationspartnern, die aufwändige theoretische Modelle für die Beschreibung solcher Laser entwickeln, zeigten, konnten es die Bremer kaum glauben, machten sich jedoch sofort an die Modellierung der experimentellen Daten. Und in der Tat wurden die Ergebnisse durch Modellrechnungen bestätigt. Mehr noch: Es wurden Oszillationen in der Wahrscheinlichkeit, zwei Photonen mit einem bestimmten zeitlichen Versatz zu finden, vorhergesagt, die experimentell voll bestätigt werden konnten. Bestimmte Versatzzeiten sind wahrscheinlicher als andere, zu denen es zu Quantenlichtemission kommt.

Dieses Verhalten kann qualitativ wie folgt verstanden werden: Der Laser kann grob mit dem Raumschiff Enterprise verglichen werden, das zwei Antriebsmodi hat: den normalen Raketenantrieb und den Warp-Antrieb. Der Raketenantrieb entspricht der Emission klassischen Lichts unterhalb der Schwelle, der Warp-Antrieb entspricht dem Laserbetrieb. Will man nun von klassisch auf Warp schalten und gibt dabei nicht genügend Schub, fängt das Triebwerk zu stottern an und die Enterprise hüpft durch die unendlichen Weiten.

Ganz ähnlich sind die Oszillationen, die in der Photonenstatistik der miniaturisierte Laser beobachtet werden: Der Laser springt in seiner Emissionscharakteristik. Erst wenn genügend Schub gegeben wird, ergibt sich ein gleichmäßiger Laserbetrieb.

Diese Arbeiten wurden durch die großzügige Unterstützung durch die Deutsche Forschungsgemeinschaft ermöglicht und wurden in der jüngsten Ausgabe der Fachzeitschrift Nature veröffentlicht.

Weitere Informationen:
Manfred Bayer
Fakultät Physik
Experimentelle Physik 2
TU Dortmund
D-44221 Dortmund
Germany
Tel: 0231/755-3532
Fax: 0231/755-3674
E-mail: manfred.bayer@tu-dortmund.de

Ole Lünnemann | idw
Weitere Informationen:
http://www.nature.com/nature/journal/v460/n7252/full/nature08126.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultra-sensitiv dank quantenmechanischer Verschränkung
28.06.2017 | Universität Stuttgart

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungsnachrichten

Willkommen an Bord!

28.06.2017 | Veranstaltungsnachrichten

Fraunhofer-Forscher entwickeln Hochdrucksensoren für Extremtemperaturen

28.06.2017 | Energie und Elektrotechnik