Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mini-Röntgenquelle mit Laserlicht

14.08.2015

Physiker der Ludwig-Maximilians-Universität, des Max-Planck-Instituts für Quantenoptik und der TU München haben ein Verfahren aus lasergenerierter Röntgenstrahlung und Phasenkontrast-Röntgentomographie entwickelt, mit dem sie Weichteil-Strukturen in Organismen dreidimensional darstellen.

Mit Laserlicht haben Münchner Physiker eine Miniatur-Röntgenquelle gebaut. Damit haben die Forscher vom Labor für Attosekundenphysik des Max-Planck-Instituts für Quantenoptik und der Technischen Universität München erstmals mit Hilfe von lasererzeugter Röntgenstrahlung feinste Strukturen im Körper eines Lebewesens dreidimensional aufgenommen.


Das weltweit erste Bild einer Fliege, die mit einem rein lasergestützten Phasenkontrast-Röntgentomographie-Bildverfahren aufgenommen wurde. Zusammengesetzt ist es aus rund 1500 Einzelbildern.

Foto: Karsch/Pfeiffer

Mit der lichtgetriebenen Strahlung in Kombination mit der Phasenkontrast-Röntgentomographie machten die Wissenschaftler feinste Details einer nur wenige Millimeter großen Fliege sichtbar. Bis heute wird eine vergleichbare Strahlung in kilometergroßen, teuren Ringbeschleunigern erzeugt.

Das lasergetriebene System in Kombination mit der Phasenkontrast-Röntgentomographie zur Darstellung von Weichteilen beansprucht gerade mal ein Universitätslabor. In künftigen medizinischen Anwendungen könnte das neue Bildgebungsverfahren damit kostengünstiger und platzsparender als heutige Technologien zum Einsatz kommen.

Selbst feinste Härchen auf den Flügeln einer winzigen Fliege werden sichtbar, wenn die Physiker um Prof. Stefan Karsch und Prof. Franz Pfeiffer ein Insekt mit Röntgenlicht durchleuchten. Das Experiment hat Pioniercharakter.

Denn erstmals haben die Wissenschaftler ihre Technik zur Erzeugung von Röntgenstrahlung aus Laserpulsen gekoppelt mit der sogenannten Phasenkontrast-Röntgentomographie, mit der man Gewebe in Organismen darstellen kann. Herausgekommen ist eine dreidimensionale Ansicht des Tieres, die ungeahnte Details sichtbar gemacht hat.

Die dazu notwendigen Röntgenstrahlen wurden über Elektronen erzeugt, die von rund 25 Femtosekunden langen Laserpulsen auf einer Strecke von rund einem Zentimeter fast bis auf Lichtgeschwindigkeit gebracht wurden. Eine Femtosekunde dauert ein Millionstel einer milliardstel Sekunde. Die Laserpulse hatten eine Leistung von rund 80 Terawatt (80x10^12 Watt). Zum Vergleich: Ein Atomkraftwerk verfügt über 1500 Megawatt (1,5x10^9 Watt).

Zunächst pflügt der Laserpuls durch ein Plasma, bestehend aus positiv geladenen Atomrümpfen und deren Elektronen, wie ein Schiff durchs Wasser und erzeugt dabei eine Kielwelle, die aus schwingenden Elektronen besteht. Diese Elektronenwelle zieht eine wellenförmig elektrische Feldstruktur nach sich, auf der Elektronen surfen und dadurch beschleunigt werden. Dabei kommen die Teilchen ins Schlingern und emittieren Röntgenstrahlung.

Jeder Lichtpuls erzeugt einen Röntgenpuls. Die erzeugte Röntgenstrahlung hat spezielle Eigenschaften: Sie hat eine Wellenlänge von rund 0,1 Nanometer, eine Dauer von nur ca. fünf Femtosekunden und ist räumlich kohärent, das heißt, sie scheint von einem Punkt auszugehen.

Die lasergetriebene Röntgenstrahlung kombinierten die Forscher erstmals mit dem Phasenkontrast-Bildgebungsverfahren des Teams von Prof. Franz Pfeiffer von der TU- München. Dabei nutzt man, im Gegensatz zur üblichen Absorption, die Brechung der Strahlung an Objekten, um deren Form exakt abzubilden. So wird auch weiches Gewebe sichtbar. Damit dies funktioniert, ist die oben erwähnte räumliche Kohärenz Voraussetzung.

Mit diesem lasergestützten Bildgebungsverfahren sind die Forscher in der Lage, Strukturen von ca. 1/10 bis 1/100 des Durchmessers eines menschlichen Haares sichtbar zu machen. Ein weiterer Vorteil ist die Möglichkeit dreidimensionale Abbildungen eines Objekts zu erschaffen und so quasi in dessen Körper einzutauchen.

Denn nach jedem Röntgenstrahlungspuls, also nach jedem Einzelbild, kann das zu untersuchende Objekt ein Stück gedreht werden. So entstanden beispielsweise von der Fliege rund 1500 Einzelbilder, die dann zu einem 3D-Datensatz zusammengesetzt werden konnten.

Aufgrund der Kürze der Röntgenpulse kann diese Technik in Zukunft auch ultraschnelle Vorgänge auf der Femtosekunden-Zeitskala, wie sie etwa in Molekülen vorkommen, erschließen, quasi also durch Belichtung mit einem Femtosekunden-Blitzlicht.

Vor allem aber interessant wird die Technologie für medizinische Anwendungen. Denn sie ist in der Lage, Unterschiede in der Dichte von Gewebe sichtbar zu machen. Tumorgewebe etwa haben eine geringere Dichte als gesundes Gewebe.

Damit bietet das Verfahren eine großartige Perspektive Tumore, die kleiner als ein Millimeter sind, lokal in ihrem Frühstadium aufzuspüren, bevor sie in den Körper streuen und ihre tödliche Wirkung entfalten. Dazu müssen die Forscher jedoch die Wellenlänge der Röntgenstrahlung noch weiter verkürzen, um dickere Gewebeschichten als bisher durchdringen zu können.
Thorsten Naeser

Originalpublikation:
J. Wenz, S. Schleede, K. Khrennikov, M. Bech, P. Thibault, M. Heigoldt, F. Pfeiffer und S. Karsch, Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source
Nature Communications, 20.Juli 2015, doi: 10.1038/ncomms8568

Weitere Informationen erhalten Sie von:
Prof. Dr. Stefan Karsch
Fakultät für Physik der Ludwig-Maximilians-Universität München
Am Coulombwall 1, 85748 Garching
Tel.: 089 32905 242
Email: stefan.karsch@mpq.mpg.de
www.attoworld.de  , www.lex-photonics.de 

Prof. Franz Pfeiffer
Technische Universität München, Lehrstuhl für Biomedizinische Physik
James-Franck-Str. 1, 85748 Garching b. München
Tel.: 089 289 10807
Email: franz.pfeiffer@tum.de

Karolina Schneider | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die schnellste lichtgetriebene Stromquelle der Welt
26.09.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas
25.09.2017 | Universität Kassel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie