Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mini-Röntgenquelle mit Laserlicht

14.08.2015

Physiker der Ludwig-Maximilians-Universität, des Max-Planck-Instituts für Quantenoptik und der TU München haben ein Verfahren aus lasergenerierter Röntgenstrahlung und Phasenkontrast-Röntgentomographie entwickelt, mit dem sie Weichteil-Strukturen in Organismen dreidimensional darstellen.

Mit Laserlicht haben Münchner Physiker eine Miniatur-Röntgenquelle gebaut. Damit haben die Forscher vom Labor für Attosekundenphysik des Max-Planck-Instituts für Quantenoptik und der Technischen Universität München erstmals mit Hilfe von lasererzeugter Röntgenstrahlung feinste Strukturen im Körper eines Lebewesens dreidimensional aufgenommen.


Das weltweit erste Bild einer Fliege, die mit einem rein lasergestützten Phasenkontrast-Röntgentomographie-Bildverfahren aufgenommen wurde. Zusammengesetzt ist es aus rund 1500 Einzelbildern.

Foto: Karsch/Pfeiffer

Mit der lichtgetriebenen Strahlung in Kombination mit der Phasenkontrast-Röntgentomographie machten die Wissenschaftler feinste Details einer nur wenige Millimeter großen Fliege sichtbar. Bis heute wird eine vergleichbare Strahlung in kilometergroßen, teuren Ringbeschleunigern erzeugt.

Das lasergetriebene System in Kombination mit der Phasenkontrast-Röntgentomographie zur Darstellung von Weichteilen beansprucht gerade mal ein Universitätslabor. In künftigen medizinischen Anwendungen könnte das neue Bildgebungsverfahren damit kostengünstiger und platzsparender als heutige Technologien zum Einsatz kommen.

Selbst feinste Härchen auf den Flügeln einer winzigen Fliege werden sichtbar, wenn die Physiker um Prof. Stefan Karsch und Prof. Franz Pfeiffer ein Insekt mit Röntgenlicht durchleuchten. Das Experiment hat Pioniercharakter.

Denn erstmals haben die Wissenschaftler ihre Technik zur Erzeugung von Röntgenstrahlung aus Laserpulsen gekoppelt mit der sogenannten Phasenkontrast-Röntgentomographie, mit der man Gewebe in Organismen darstellen kann. Herausgekommen ist eine dreidimensionale Ansicht des Tieres, die ungeahnte Details sichtbar gemacht hat.

Die dazu notwendigen Röntgenstrahlen wurden über Elektronen erzeugt, die von rund 25 Femtosekunden langen Laserpulsen auf einer Strecke von rund einem Zentimeter fast bis auf Lichtgeschwindigkeit gebracht wurden. Eine Femtosekunde dauert ein Millionstel einer milliardstel Sekunde. Die Laserpulse hatten eine Leistung von rund 80 Terawatt (80x10^12 Watt). Zum Vergleich: Ein Atomkraftwerk verfügt über 1500 Megawatt (1,5x10^9 Watt).

Zunächst pflügt der Laserpuls durch ein Plasma, bestehend aus positiv geladenen Atomrümpfen und deren Elektronen, wie ein Schiff durchs Wasser und erzeugt dabei eine Kielwelle, die aus schwingenden Elektronen besteht. Diese Elektronenwelle zieht eine wellenförmig elektrische Feldstruktur nach sich, auf der Elektronen surfen und dadurch beschleunigt werden. Dabei kommen die Teilchen ins Schlingern und emittieren Röntgenstrahlung.

Jeder Lichtpuls erzeugt einen Röntgenpuls. Die erzeugte Röntgenstrahlung hat spezielle Eigenschaften: Sie hat eine Wellenlänge von rund 0,1 Nanometer, eine Dauer von nur ca. fünf Femtosekunden und ist räumlich kohärent, das heißt, sie scheint von einem Punkt auszugehen.

Die lasergetriebene Röntgenstrahlung kombinierten die Forscher erstmals mit dem Phasenkontrast-Bildgebungsverfahren des Teams von Prof. Franz Pfeiffer von der TU- München. Dabei nutzt man, im Gegensatz zur üblichen Absorption, die Brechung der Strahlung an Objekten, um deren Form exakt abzubilden. So wird auch weiches Gewebe sichtbar. Damit dies funktioniert, ist die oben erwähnte räumliche Kohärenz Voraussetzung.

Mit diesem lasergestützten Bildgebungsverfahren sind die Forscher in der Lage, Strukturen von ca. 1/10 bis 1/100 des Durchmessers eines menschlichen Haares sichtbar zu machen. Ein weiterer Vorteil ist die Möglichkeit dreidimensionale Abbildungen eines Objekts zu erschaffen und so quasi in dessen Körper einzutauchen.

Denn nach jedem Röntgenstrahlungspuls, also nach jedem Einzelbild, kann das zu untersuchende Objekt ein Stück gedreht werden. So entstanden beispielsweise von der Fliege rund 1500 Einzelbilder, die dann zu einem 3D-Datensatz zusammengesetzt werden konnten.

Aufgrund der Kürze der Röntgenpulse kann diese Technik in Zukunft auch ultraschnelle Vorgänge auf der Femtosekunden-Zeitskala, wie sie etwa in Molekülen vorkommen, erschließen, quasi also durch Belichtung mit einem Femtosekunden-Blitzlicht.

Vor allem aber interessant wird die Technologie für medizinische Anwendungen. Denn sie ist in der Lage, Unterschiede in der Dichte von Gewebe sichtbar zu machen. Tumorgewebe etwa haben eine geringere Dichte als gesundes Gewebe.

Damit bietet das Verfahren eine großartige Perspektive Tumore, die kleiner als ein Millimeter sind, lokal in ihrem Frühstadium aufzuspüren, bevor sie in den Körper streuen und ihre tödliche Wirkung entfalten. Dazu müssen die Forscher jedoch die Wellenlänge der Röntgenstrahlung noch weiter verkürzen, um dickere Gewebeschichten als bisher durchdringen zu können.
Thorsten Naeser

Originalpublikation:
J. Wenz, S. Schleede, K. Khrennikov, M. Bech, P. Thibault, M. Heigoldt, F. Pfeiffer und S. Karsch, Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source
Nature Communications, 20.Juli 2015, doi: 10.1038/ncomms8568

Weitere Informationen erhalten Sie von:
Prof. Dr. Stefan Karsch
Fakultät für Physik der Ludwig-Maximilians-Universität München
Am Coulombwall 1, 85748 Garching
Tel.: 089 32905 242
Email: stefan.karsch@mpq.mpg.de
www.attoworld.de  , www.lex-photonics.de 

Prof. Franz Pfeiffer
Technische Universität München, Lehrstuhl für Biomedizinische Physik
James-Franck-Str. 1, 85748 Garching b. München
Tel.: 089 289 10807
Email: franz.pfeiffer@tum.de

Karolina Schneider | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Raumschrott im Fokus
22.05.2018 | Universität Bern

nachricht Countdown für Kilogramm, Kelvin und Co.
18.05.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics