Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Millionen für neue Forschergruppe in der Festkörperphysik

27.10.2009
Mit 3,7 Millionen Euro fördert die Deutsche Forschungsgemeinschaft (DFG) eine neue Physik-Forschergruppe an der Uni Würzburg. Die Wissenschaftler untersuchen elektronische Quanteneffekte in Nanostrukturen; weitere Fortschritte in der Mikroelektronik sind ihr Ziel.

Die Miniaturisierung schreitet in der Mikroelektronik weiter voran - und stößt auf Grenzen: "Je winziger elektronische Bauelemente sind, desto störender wirken sich Quanteneffekte und die elektrische Abstoßung zwischen den Leitungselektronen auf ihre Funktionalität aus", erklärt Professor Ralph Claessen, Sprecher der neuen Forschergruppe.

Was in der herkömmlichen Siliziumtechnologie eher nachteilig wirkt, kann allerdings in anderen Materialien neue Perspektiven eröffnen. "In Oxiden, intermetallischen Cer-Verbindungen und verwandten Festkörpermaterialien lässt sich die Wechselwirkung zwischen den Elektronen möglicherweise gezielt für neuartige maßgeschneiderte Anwendungen nutzen", so Claessen. Als Beispiele nennt er hoch empfindliche Magnetfeldsensoren, elektrisch beschreibbare magnetische Speicherbits oder schaltbare Supraleiter.

Quanteneffekte verstehen und kontrollieren

Zwei Ziele verfolgt die neue Forschergruppe: Sie will die auftretenden Vielteilchen-Quanteneffekte an modellhaften Nanostrukturen untersuchen und so die Vorgänge verstehen, die dort an den Ober- und Grenzflächen ablaufen. Und sie will lernen, diese Vorgänge gezielt zu kontrollieren - etwa durch die Auswahl der Materialien oder durch äußere Einflüsse wie Temperatur oder elektrische und magnetische Felder.

Die Forschergruppe kann sich dabei auf ein breites Instrumentarium experimenteller und theoretischer Methoden stützen. "Dabei spielt übrigens - in bester Würzburger Tradition - die Anwendung von Röntgenstrahlung für modernste Spektroskopieverfahren eine zentrale Rolle", sagt Claessen.

Mitglieder der Forschergruppe

Getragen wird die DFG-Forschergruppe "Electron Correlation-Induced Phenomena in Surfaces and Interfaces with Tunable Interactions" von neun Wissenschaftlern.

Sieben davon gehören der Würzburger Fakultät für Physik und Astronomie an: Fakher Assaad, Ralph Claessen, Kai Fauth, Jean Geurts, Werner Hanke, Andrei Pimenov, Friedrich Reinert, Jörg Schäfer und Michael Sing.

Mit dabei sind außerdem Carsten Honerkamp von der RWTH Aachen und Ole Krogh Andersen vom Max-Planck-Institut für Festkörperforschung in Stuttgart.

Acht DFG-Forschergruppen in Würzburg aktiv

Die erste Förderperiode der neuen Forschergruppe dauert drei Jahre und beginnt am 1. November 2009. Mit ihr zusammen sind an der Universität Würzburg nun insgesamt acht von der DFG geförderte Forschergruppen aktiv. Fünf davon befassen sich mit klinisch-medizinischen Themen.

Kontakt:
Prof. Dr. Ralph Claessen,
T (0931) 31-85732,
claessen@physik.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen