Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrowellen für ultrakalte Atome - Extrem präzise Messungen dank neuartiger Mikrochips

07.07.2009
Extrem kalte Atome lassen sich auf einem Mikrochip mithilfe von Lasern und Magnetfeldern erzeugen und gezielt manipulieren.

Das macht diese Chips zu einer Art Experimentierfeld der Quantenphysik, um grundlegende Fragen zu untersuchen, etwa den Welle-Teilchen-Dualismus. Gleichzeitig können Atomchips als präzise Sensoren für Kräfte wie die Gravitation oder schwache elektromagnetische Felder dienen.

LMU-Physikern um Dr. Philipp Treutlein und Professor Theodor W. Hänsch ist es nun erstmals gelungen, Mikrowellenfelder auf einem Atomchip zu integrieren und damit ein Interferometer, also ein Messgerät für Materiewellen, zu realisieren.

Die dabei verwendeten Mikrowellenpotentiale sind eine Schlüsseltechnologie für die Erzeugung neuartiger "gequetscher" Quantenzustände.

Diese Zustände verringern das sogenannte Quantenrauschen der Atome und eignen sich damit für die extrem präzise interferometrische Messung von Kräften. Die Potentiale könnten außerdem eine Schlüsseltechnologie für die Herstellung mikrochip-basierter Quantencomputer darstellen. (Nature Physics online, 5. Juli 2009).

Eingefangen, tiefgekühlt und unter Strom gesetzt: Atome auf einem Mikrochip haben oft kein leichtes Schicksal. Sie erlauben aber grundlegende Einblicke in die Welt der Quantenphysik. Die Basis der chipbasierten Technologie ist ein Quantenzustand der Materie, der 1995 erstmals im Labor verwirklicht wurde: Im Bose-Einstein-Kondensat werden Atome bis auf wenige Millionstel Grad über dem absoluten Nullpunkt - also 0 Kelvin oder -273,15 Grad Celsius - abgekühlt.

Aufgrund der extrem kalten Temperaturen entsprechen die Bewegung, der interne Energiezustand und andere Eigenschaften der Atome dann einem genau definierten Quantenzustand. Dieser kann mit Hilfe eines Mikrochips in einer Vakuumkammer gezielt manipuliert werden. Strom erzeugt dabei Magnetfelder, die die Teilchen wenige Mikrometer über der Chipoberfläche schweben lassen.

"Diese Technologie ermöglicht, den Welle-Teilchen-Dualismus, die Verschränkung von Quantenzuständen und andere grundlegende Fragen der Quantenphysik zu untersuchen", sagt Dr. Philipp Treutlein, Leiter der Arbeitsgruppe "Munich Atom Chip Group" an der Fakultät für Physik der LMU München und dem Max-Planck-Institut für Quantenoptik in Garching. "Unter Quantenverschränkung versteht man, dass zwei oder mehr Teilchen nicht mehr einzeln, sondern nur noch als Gesamtsystem beschrieben werden können."

Atomchips werden auch als Interferometer genutzt. Dieses Messgerät für Materiewellen nutzt aus, dass sich das Bose-Einstein-Kondensat auf dem Chip zunächst räumlich aufspalten und anschließend wieder vereinen lässt. "Bei der Aufspaltung wird eine quantenmechanische Überlagerung der Atome in zwei Zuständen erzeugt. Bei der Vereinigung interferieren die Zustände dann, und ein charakteristisches Interferenzmuster entsteht", erklärt Treutlein. "Wirken im aufgespalteten Zustand externe Kräfte auf die Atomwolke ein, kann man diese anhand der Veränderungen des Interferenzmusters messen."

Treutlein und sein Team haben nun ein Interferometer auf der Basis von Bose-Einstein-Kondensaten entwickelt. Es soll extrem präzise Messungen ermöglichen und erzeugt zudem - dank integrierter Mikrowellenfelder - außerordentlich flexible Potentiale. "Wir konnten den Bewegungszustand und den internen Energiezustand der Atome unabhängig voneinander manipulieren", berichtet Treutlein. Neu ist auch, dass das Interferenzmuster nicht mehr räumlich aufgelöst werden muss. Es genügt, die Anzahl der Atome in den verschiedenen Zuständen zu bestimmen.

Die mikrowellenbasierte Technologie ermöglicht zudem die Erzeugung "gequetschter" Quantenzustände, mit deren Hilfe die Präzision bei interferometrischen Messungen - etwa von Gravitations- oder Rotationskräften - deutlich gesteigert werden könnte. Denn gequetschte Quantenzustände reduzieren das Quantenrauschen bei Messungen. Hierdurch wird die Genauigkeit beim Auslesen von Atomuhren und bei der interferometrischen Messung sehr schwacher Kräfte bislang begrenzt.

"Mikrowellenbasierte Atomchips könnten als kompakte und extrem empfindliche Messgeräte schwache elektromagnetische Felder, Rotations- und Gravitationkräfte bestimmen", sagt Treutlein. Die Messung von Rotationskräften ist etwa bei Navigationsgeräten von Bedeutung, während das Aufspüren schwacher Gravitationsveränderungen für die Entdeckung unterirdischer Wasser- oder Erdölvorräte von Nutzen sein könnte.

In der Computertechnologie sieht der Physiker etwa in der Entwicklung eines Quantencomputers mögliche Anwendungen. "Hier sind Atomchips von Vorteil, weil sie sehr kompakt sind und viele Quantenbits und -gatter auf ihnen Platz haben", so Treutlein. "Außerdem leben die Überlagerungszustände von ultrakalten Atomen lange und sind sehr stabil." (CA/suwe)

Publikation:
"Coherent manipulation of Bose-Einstein condensates with state-dependent microwave potentials on an atom chip";
Pascal Böhi, Max F. Riedel, Johannes Hoffrogge, Jakob Reichel, Theodor W. Hänsch and Philipp Treutlein;
Nature Physics online, 5. Juli 2009;
DOI: 10.1038/NPHYS1329
Ansprechpartner:
Dr. Philipp Treutlein
Fakultät für Physik und Max-Planck-Institut für Quantenoptik
Munich Atom Chip Group
Tel.: +49-(0)89-2180-3937
Fax: +49-(0)89-2180-3938
E-Mail: treutlein@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.munichatomchip.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultra-sensitiv dank quantenmechanischer Verschränkung
28.06.2017 | Universität Stuttgart

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ultra-sensitiv dank quantenmechanischer Verschränkung

28.06.2017 | Physik Astronomie

Chemisches Profil von Ameisen passt sich bei Selektionsdruck rasch an

28.06.2017 | Biowissenschaften Chemie

Umfangreiche Fördermaßnahmen für Forschung an Chromatin, Nebenniere und Krebstherapie

28.06.2017 | Förderungen Preise