Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrowellen für die Quanteninformation

06.07.2009
MPQ-LMU-Physiker nutzen Mikrowellen für Doppelspaltexperiment mit Atomen

Seit geraumer Zeit können atomare Wolken auf Mikrochips - sogenannten 'Atomchips'- über längere Zeit gespeichert und manipuliert werden. Dies erlaubt zum einen Experimente, die der Beantwortung fundamentaler Fragen dienen.

Da die Atomchips präzise Kontrolle über atomare Quantensysteme mit einem kompakten chip-basierten experimentellen Aufbau kombinieren, sind sie jedoch auch interessant für Anwendungen. So wurde mit dieser Technik bereits eine chip-basierte Atomuhr realisiert, die für den portablen Einsatz geeignet ist.

Ein Team von Wissenschaftlern um Professor Theodor W. Hänsch und Dr. Philipp Treutlein (Ludwig-Maximilians-Universität München und Max-Planck-Institut für Quantenoptik in Garching) haben nun erstmals chip-basierte atomare Quantengase mit Mikrowellenfeldern manipuliert. Wie sie in der Zeitschrift Nature Physics (Advance Online Publication, DOI:10.1038/Nphys1329, 5. Juli 2009) berichten, konnten sie mit deren Hilfe eine Art Doppelspaltexperiment für Atome durchführen.

Als 'Atominterferometer' eignen sich Atomchips auch als präzise Sensoren z.B. für extrem schwache elektromagnetische Felder oder kleine Änderungen in der Gravitationskraft. Die hier verwendete Mikrowellentechnik ist aber auch der Schlüssel für die Realisierung von Quantengattern, wie sie für den chip-basierten Quantencomputer gebraucht werden.

Was dem einen recht ist, ist dem andern billig: Mikrostrukturierte Chips, wie sie für herkömmliche Rechner entwickelt wurden, dienen Quantenphysikern heute als Labor, um atomare Quantengase gezielt zu manipulieren. Realisiert wurde die erste chip-basierte Atomfalle im Jahre 1999 von einer Gruppe um Theodor Hänsch und Jakob Reichel. Die Wissenschaftler erkannten, dass sich die Magnetfelder, welche mit den elektrischen Strömen in den Leiterbahnen verknüpft sind, nutzen lassen, um einzelne Atome oder auch atomare Wolken in einem Abstand von wenigen Mikrometern von der Chipoberfläche einzufangen, schwebend zu halten und ihren Zustand zu verändern. Dies war die Geburtsstunde des "Atomchips".

In dem hier beschriebenen Experiment wird eine Wolke von Rubidiumatomen, die gut von der Umgebung isoliert ist, auf diese Weise auf dem Chip eingefangen und dann mit Hilfe von speziellen Kühlverfahren (der Laserkühlung und der Verdampfungskühlung) auf wenige Millionstel Grad über dem absoluten Nullpunkt abgekühlt. Bei diesen Temperaturen bilden die Atome ein Bose-Einstein-Kondensat (BEC), einen neuartiger Quantenzustand der Materie, der 1924 von Bose und Einstein vorhergesagt und 1995 erstmals im Labor realisiert wurde. In dieser Phase befinden sich sämtliche Freiheitsgrade der Atome, sowohl ihre Bewegungs- als auch ihre internen Zustände, in ein und demselben wohl definierten Quantenzustand. Dieser kann dann mit Hilfe des Chips manipuliert werden um grundlegende Fragen der Quantenphysik wie Welle-Teilchen-Dualismus oder Verschränkung zu untersuchen.

Mit einem solchen System haben die Physiker aber bereits auch Anwendungen wie z. B. eine chip-basierte Atomuhr realisiert, die für den portablen Einsatz geeignet ist. Dazu nutzten sie aus, dass die Atome in dem BEC in eine quantenmechanische Überlagerung (Superposition) von zwei verschiedenen internen Zuständen gebracht werden können und die Übergangsfrequenz zwischen den beiden Zuständen als Referenz für Zeitmessungen dienen kann. Der quantenmechanische Zustand der Atome blieb dabei über eine Sekunde lang erhalten. Dies ist eine Voraussetzung für präzise Atomuhren sowie die interferometrischen Messungen, wie sie nun im nächsten Schritt durchgeführt wurden.

Das hier verwirklichte Atominterferometer basiert auf einer neuen Technik: die Physiker integrierten erstmals Mikrowellenfelder auf dem Chip. Dabei dient ein kurzer Puls des ersten Mikrowellenfelds der Präparation des internen Zustands der Atome in dem quantenmechanischen Superpositionszustand. Ein zweites Mikrowellenfeld erzeugt ein Potential, das die Atome abhängig vom internen Zustand beeinflusst. Dadurch kommt es zu einer kohärenten Aufspaltung des BEC in zwei räumlich getrennte Materiewellenpakete. Nimmt man zu dieser Zeit ein Bild auf, sieht man zwei räumlich deutlich getrennte atomare Wolken. Werden die beiden BEC-Wellenpakete jedoch (ohne ein Bild aufzunehmen) durch Herunterfahren des Mikrowellenpotentials und einen zweiten Puls zwischen den internen Zuständen wieder kohärent überlagert, so beobachtet man Interferenz. Auf diese Weise wurde nachgewiesen, dass sich die Atome im aufgespalteten Zustand in einer quantenmechanischen Überlagerung von zwei deutlich getrennten Orten befunden haben - eine Variante des Doppelspaltexperiments mit Atomen.

Um Interferenz zu beobachten, muss der Superpositionszustand der Atome über die gesamte Dauer des Aufspaltens und Wiedervereinigens erhalten bleibt. Insbesondere darf die Phase der Superposition nicht durch unkontrollierte Schwankungen der Potentiale oder Einflüsse der Umgebung gestört werden. Die Beobachtung eines stabilen Interferenzmuster ist der Nachweis, dass diese Bedingungen im vorliegenden Experiment erfüllt wurden.

Die Phase des Interferenzmusters ist empfindlich auf externe Kräfte, z.B. auf die Gravitation oder auf elektromagnetische Felder, was zur Messung dieser Kräfte herangezogen werden kann. Eine Besonderheit dieses Atominterferometers besteht darin, dass die Phase nicht nur über den Bewegungszustand, sondern auch über den internen Zustand der Atome ausgelesen werden kann, ähnlich wie bei einer Atomuhr. Dies führt zu einer höheren Auflösung beim Auslesen des Interferometers, da nur die Atomzahl in den beiden Zuständen bestimmt und nicht das Interferenzmuster räumlich aufgelöst werden muss.

Die Eigenschaft der Mikrowellenpotentiale, auf die beiden internen Zustände unterschiedlich zu wirken, ist ein Schlüssel zur Erzeugung von neuartigen Quantenzuständen des Bose-Einstein-Kondensats, wie z.B. 'gequetschten' bzw. 'squeezed states'. Hier wird die Genauigkeit für eine der beiden durch die Heisenbergsche Unschärferelation verknüpften quantenmechanischen Größen auf Kosten der anderen erhöht. Mit solchen gequetschten Zuständen lässt sich z.B. die Präzision, mit der die Phase des Interferometers ausgelesen werden kann, weiter steigern. Im vorliegenden Experiment konnten die Wissenschaftler erste Anzeichen für 'Squeezing' beobachten, die nun genauer untersucht werden sollen.

Ein weiterer Anwendungsbereich, der noch etwas weiter in der Zukunft liegt, ist ein chip-basierter Quantencomputer. In diesem Kontext haben Atomchips den Vorteil, dass sie die exzellenten Kohärenzeigenschaften der Atome (quantenmechanische Superpositionszustände leben über eine Sekunde lang) mit einer skalierbaren, chip-basierten Technologie verbinden. Ein detailliertes theoretisches Konzept für ein Quantengatter auf einem Atomchip liegt bereits vor. Die in der vorliegenden Arbeit erstmals implementierten, auf Mikrowellen-Nahfeldern beruhenden Potentiale sind eine Schlüsseltechnologie für seine experimentelle Verwirklichung. [PT/Olivia Meyer-Streng]

Originalveröffentlichung:

Pascal Böhi, Max F. Riedel, Johannes Hoffrogge, Jakob Reichel, Theodor W. Hänsch und Philipp Treutlein
"Coherent manipulation of Bose-Einstein condensates with state-dependent microwave potentials on an atom chip"

Nature Physics (Advance Online Publication, DOI:10.1038/Nphys1329, 5. Juli 2009)

Kontakt:
Prof. Dr. Theodor W. Hänsch
Lehrstuhl für Experimentalphysik, Ludwig-Maximilians-Universität, München
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 - 89 / 32905 702/712
Fax: +49 - 89 / 32905 312
E-Mail: t.w.haensch@mpq.mpg.de
Dr. Philipp Treutlein
Max-Planck-Institut für Quantenoptik
und LMU München, Fakultät für Physik
Schellingstr. 4/III
80799 München
Tel.: +49-(0)89-2180-3937
Fax: +49-(0)89-2180-3938
E-Mail : treutlein@lmu.de
http://www.munichatomchip.de
Dr. Olivia Meyer-Streng
Presse & Kommunikation
Max-Planck-Institut für Quantenoptik
Telefon: +49 - 89 / 32905 - 213
Fax: +49 - 89 / 32905 - 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Weitere Informationen:
http://www.munichatomchip.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie