Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrowellen-Leiter für Elektronen

10.05.2011
Wissenschaftler am MPQ wenden erstmals das Prinzip der Paul-Falle auf Elektronen an.

Die Untersuchung der Eigenschaften von Elektronen spielt eine Schlüsselrolle für das Verständnis der Naturgesetze. Die extrem leichten und flinken Teilchen sind aber nur schwer unter Kontrolle zu bringen.


Leiterelektroden mit Elektronenquelle im Hintergrund; die weißen Linien dazwischen sind das darunterliegende Substrat. Die Elektronen werden durch ein winziges Loch im Zentrum der Quelle, welches einen Durchmesser von 20µm hat und auf dem Bild nicht zu erkennen ist, emittiert. Sie werden anschließend in einer Höhe von einem halben Millimeter über den Elektroden geführt und entlang der gebogenen Elektrodenstruktur im Vordergrund nach links abgelenkt. Hommelhoff

Mitarbeiter der Forschungsgruppe „Ultraschnelle Quantenoptik“ um Dr. Peter Hommelhoff am Max-Planck-Institut für Quantenoptik (Garching bei München) haben jetzt mikrostrukturierte Chips entwickelt, auf denen sich langsame Elektronen erstmals durch rein elektrische Wechselfelder führen lassen – wie Lichtwellen in einer Glasfaser (Phys. Rev. Lett., Online-Ausgabe, 9. Mai 2011). Die neue Technik verspricht ein breites Anwendungspotential, von der Durchführung fundamentaler Quantenexperimente bis hin zur nichtinvasiven Elektronenmikroskopie.

Elektronen haben der Formulierung der Quantenmechanik einen entscheidenden Impuls gegeben. Denn an ihnen manifestierte sich erstmals experimentell der bereits von Louis de Broglie vorausgesagte Wellencharakter elementarer Teilchen. Auch heute noch lässt sich aus ihrem Verhalten viel über die fundamentalen Gesetze der Natur lernen. Entsprechende Messungen werden bisher vor allem in sogenannten Penning-Fallen durchgeführt, bei denen eine Kombination von elektrischen und magnetischen Feldern die Elektronen in geordnete Bahnen zu lenken vermag.

Für eine Reihe von Experimenten mit propagierenden Elektronenstrahlen, wie zum Beispiel der Interferenz von langsamen Elektronen, wäre es von Vorteil, auf den Einsatz magnetischer Felder zu verzichten und die Elektronen mit rein elektrischen Wechselfeldern zu führen, sowie es seit Jahrzehnten für den Einfang elektrisch geladener Atome (Ionen) üblich ist. Die hier verwendeten sogenannten Paul-Fallen basieren auf vier Elektroden, an denen eine elektrische Wechselspannung anliegt, die mit Radiofrequenzen schwingt. Netto ergibt sich dabei eine rückstellende Kraft, welche die Teilchen im Zentrum der Falle festhält. Für die Erfindung dieser Methode, geladene Teilchen zu fangen, erhielt Wolfgang Paul 1989 den Nobelpreis für Physik.

Seit einigen Jahren greifen Forscher zur Realisierung von Paul-Fallen auch auf die für herkömmliche Mikroelektronik entwickelte Chiptechnik zurück und realisieren solche Ionenfallen erfolgreich mit mikrostrukturierten Elektroden auf flachen Substraten. Die Gruppe von Dr. Hommelhoff wendet diese Technik nun erstmals auf Elektronen an. Dabei ist aber zu beachten, dass die Elektronen ungefähr 10000mal leichter als Ionen sind und damit viel schneller auf elektrische Felder reagieren als die vergleichsweise schweren und trägen Ionen. Die Frequenz, mit der die Spannung an den Elektroden umgepolt wird, muss daher für das Fangen von Elektronen viel größer als beim Einschluß von Ionen sein und liegt im Mikrowellenbereich bei einigen Gigahertz.

In ihrem Experiment verwenden die Garchinger Physiker Elektronen aus einer thermischen Elektronenquelle, bei der ein Wolframdraht wie in einer Glühbirne geheizt wird und die austretenden Elektronen zu einem parallelen Strahl mit einer Energie von einigen Elektronenvolt gebündelt werden (siehe Abb. 1). Von dort werden die Elektronen in den „Wellenleiter“ eingekoppelt. Das ist eine Struktur aus fünf auf einem flachen Substrat gefertigten, parallel verlaufenden Elektroden, an denen eine Wechselspannung mit einer Frequenz von etwa einem Gigahertz anliegt. In einer Entfernung von einem halben Millimeter über den Elektroden entsteht dadurch ein oszillierendes Quadrupolfeld, das Elektronen im Zentrum des Feldes in radialer Richtung, also quer zu den Elektroden, einschließt. In longitudinaler Richtung, parallel zu den Elektroden, wirkt dagegen keine Kraft auf die Teilchen, so dass sich diese frei entlang des „Leiters“ bewegen können. Insgesamt werden die Elektronen dadurch gezwungen, dem Verlauf der Elektroden auf dem Substrat zu folgen. Der Einschluss in radialer Richtung ist dabei außerordentlich stark, so dass die Elektronen selbst kleinräumigen Richtungsänderungen folgen.

Um den Effekt der Elektronenführung besser demonstrieren zu können, haben die Elektroden die Form eines 37 Millimeter langen Ausschnitts aus einem Kreisbogen (mit einem Radius von 40 Millimetern). Am Ende der Struktur befindet sich ein Detektor zum Nachweis der austretenden Elektronen. Wie in Abb. 2 (b) zu sehen ist, erscheint bei eingeschaltetem Wechselfeld auf dem Detektor deutlich ein hell leuchtender Fleck in der linken Bildhälfte, genau dort, wo sich der Ausgang des Leiters befindet. Wird das Feld abgeschaltet, laufen die Elektronen von der Quelle aus geradlinig weiter und in der rechten Bildhälfte ist dann ein aufgrund der Divergenz des Elektronenstrahls diffus erhelltes Gebiet sichtbar, siehe Abb. 2 (c).

„Uns ist mit diesem Grundlagenexperiment der Nachweis gelungen, dass Elektronen mit rein elektrischen Feldern geführt werden können“, meint Dr. Hommelhoff. „Allerdings liefert die derzeit verwendete Elektronenquelle nur einen schlecht gebündelten Strahl, weshalb Elektronen verloren gehen.“ In Zukunft wollen die Wissenschaftler deshalb den neuartigen Wellenleiter mit einer Elektronenquelle kombinieren, die auf der Feldemission von atomar scharfen Metallspitzen beruht. Hier gelingt es bereits, den Elektronenstrahl so scharf zu bündeln, dass seine transversale Komponente nur durch die Heisenbergsche Unschärferelation begrenzt ist.

Damit ließen sich unter Umständen gezielt einzelne quantenmechanische Schwingungszustände der Elektronen im radialen Potential des Leiters bevölkern. „Der jetzt demonstrierte starke Einschluss der Elektronen bedeutet auch, dass ein „Quantensprung“ von einem Schwingungszustand in den nächsthöheren eine große Energieänderung erfordern würde und damit relativ unwahrscheinlich wäre“, erklärt Johannes Hoffrogge, Doktorand am Experiment. „Ein einmal präparierter Quantenzustand bliebe dadurch lange stabil erhalten und kann gut für Experimente genutzt werden“. Unter diesen Bedingungen ließen sich Quantenexperimente durchführen, beispielsweise Elektroneninterferometrie mit geführten Elektronen: hier wird die Wellenfunktion eines Elektrons erst gespalten und dann wieder zusammengeführt, so dass charakteristische Überlagerungen aus mehreren Quantenzuständen eines Elektrons erzeugt werden. Aber es sind auch praktische Anwendungen denkbar, etwa eine neue Art der Elektronenmikroskopie. [Olivia Meyer-Streng/JH]

Originalveröffentlichung:
J. Hoffrogge, R. Fröhlich, M. A. Kasevich, and P. Hommelhoff
“Microwave Guiding of Electrons on a Chip”
Phys. Rev. Lett., Online-Ausgabe, 9. Mai 2011
Kontakt:
Dr. Peter Hommelhoff
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 89 32905 265
E-Mail: peter.hommelhoff@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 89 32905 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie