Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikroskopie auf einen atomaren Punkt gebracht

01.09.2011
Die Quantenpunkt-Kontakt-Mikroskopie bildet Oberflächen mit atomarer Auflösung ab

Oberflächen von Metallen und möglicherweise auch von Keramiken oder anderen Festkörpern lassen sich nun besonders scharf und detailreich abbilden. Physiker des Max-Planck-Instituts tasten eine Probe ab, indem sie mit der Spitze eines Rastertunnelmikroskops über sie ziehen. Dieser Kontakt besteht aus einem Adatom, einem auf der Oberfläche liegenden Atom. So erhalten sie Bilder, auf denen die atomare Struktur besser zu erkennen ist als auf gewöhnlichen Aufnahmen mit einem Rastertunnelmikroskop. Weil die Spitze des Mikroskops dabei die Oberfläche über das Adatom berührt und zudem dessen Quanteneigenschaften zum Tragen kommen, sprechen die Forscher von Quantenpunkt-Kontakt-Mikroskopie, kurz QPCM. Damit haben sie erstmals direkt die Struktur eines ungewöhnlichen Ordnungseffektes auf einer Goldoberfläche abgebildet. Außerdem haben die Wissenschaftler Hinweise gefunden, dass sie mit der Methode bestimmen können, zu welchem chemischen Element die ertasteten Atome gehören.


Ein neuer Fühler für die atomare Struktur: Mit einem einzelnen Atom als Kontakt, der durch die säulenartige Struktur in der Bildmitte angedeutet wird, tasten Physiker des Max-Planck-Instituts für Festkörperforschung über eine Goldoberfläche. Das Kontaktatom ziehen sie mit der Spitze eines Rastertunnelmikroskops (Kugelausschnitt in der oberen Bildhälfte) über die Probe. Diese Quantenpunkt-Kontakt-Mikroskopie liefert eine atomar aufgelöste Aufnahme, wie sie hier als schmales Band einem herkömmlichen Rastertunnel-Bild überlagert ist. © Peter Wahl / MPI für Festkörperforschung

Wie Oberflächen im Detail aussehen, interessiert Physiker, Chemiker, Materialwissenschaftler und Ingenieure gleichermaßen – wenn vielleicht auch aus unterschiedlichen Gründen. Physiker haben es oft auf elektronische Phänomene abgesehen, Chemiker wollen wissen, wie chemische Reaktionen an Oberflächen ablaufen, Materialwissenschaftler wollen häufig wissen, wie ordentlich eine Oberfläche strukturiert ist, um etwa die Entstehung von Rissen zu verstehen. Ingenieure schließlich nutzen diese Erkenntnisse für elektronische Bauteile, Motoren, chemische Reaktoren und zahllose andere Anwendungen.

Eine neue, besonders klare Sicht auf Oberflächen ermöglichen Physiker des Max-Planck-Instituts für Festkörperforschung jetzt mit der Quantenpunkt-Kontakt-Mikroskopie (QPCM). Sie tasten eine Probe mit einem einzelnen Atom ab, indem sie es mit der Spitze eines Rastertunnelmikroskops (RTM) über die Oberfläche ziehen. Getestet haben sie die Feinfühligkeit des atomaren Fingers bislang an Metallen wie Kupfer, Silber, Gold und Platin, die sehr regelmäßige Kristallgitter bilden.

„Das Adatom springt dabei von einem Gitterplatz zum nächsten“, erklärt Peter Wahl, der die Methode gemeinsam mit Klaus Kern und Yong-hui Zhang entwickelt hat. Wie seine Umgebung beschaffen ist, fühlt das Kontaktatom, weil zwischen Mikroskopspitze und Probe eine Spannung anliegt und ein Strom fließt. Wie viel Strom fließt, hängt von der Leitfähigkeit direkt unter dem Adatom ab. Dort etwa wo die Atome des metallischen Kristalls sitzen, ist sie niedriger als in den Räumen dazwischen.

Anhand eines elektrischen Stromflusses, genauer gesagt anhand des quantenmechanischen Tunnelstroms, ermittelt zwar auch ein Rastertunnelmikroskop im normalen Betriebsmodus, wie die Oberfläche strukturiert ist. „Die Quantenpunkt-Kontakt-Mikroskopie liefert allerdings mehr Details und schärfere Bilder, weil sie ein einzelnes Atom nutzt, das die Oberfläche berührt“, sagt Peter Wahl. Das Atom registriert so nämlich nur, wie die Probe direkt unter ihm beschaffen ist. Der RTM-Spitze, die im besten Fall auch in einem einzelnen Atom ausläuft, fehlt dieser unmittelbare Kontakt im normalen Betriebsmodus, wodurch ihre Sicht leicht getrübt wird. Direkt mit der Spitze über die Probenoberfläche zu fahren, hilft wiederum kaum, weil dann meistens nicht klar ist, ob sie die Probe nur mit dem äußersten Atom berührt oder ob die Kontaktfläche größer ist. „Das erschwert die Interpretation der Messung“, so Peter Wahl. Außerdem kann die Spitze weiche Proben verändern, was eine Messung wertlos macht.

Zwei Oberflächenstrukturen von Gold erstmals direkt abgebildet

Damit sich das Adatom mit der RTM-Spitze über die Probe führen lässt, muss die Mikroskop-Spitze symmetrisch geformt und ausgesprochen stabil sein. Also präparieren die Forscher die Spitze so lange, bis sie die nötige Stabilität hat. Auf einem herkömmlichen RTM-Bild suchen die Physiker dann ein auf der Oberfläche liegendes Atom und setzen die Mikroskopspitze auf ihm ab. Dass sie es erwischt haben, erkennen sie anhand der gemessenen Leitfähigkeit. Die entspricht bei vollem Kontakt zwischen Spitze, Adatom und Probe nämlich etwa einem Leitwertquantum, der Leitfähigkeit, die ein einzelnes Atom höchstens ermöglicht. Besteht der Kontakt aus mehr als einem Atom, messen die Forscher eine höhere Leitfähigkeit.

Wenn das Kontaktatom nun die Oberfläche abtastet, ändert sich die gemessene Leitfähigkeit abhängig von der genauen Position des Atoms zwischen Probe und Spitze sowie seiner Umgebung. Die Veränderung lässt daher auf die räumliche Struktur der obersten Atomlage der Probe schließen. Wieviel Strom durch das Atom fließt, hängt aber auch davon ab, ob in der zweiten Atomlage unter der Oberfläche ebenfalls ein Atom sitzt oder ob sich dort eine Lücke befindet. Daraus wiederum lässt sich auf die Kristallstruktur direkt an der Oberfläche schließen.

Wie hilfreich letzteres sein kann, haben die Stuttgarter Physiker umgehend bewiesen. Nicht immer nämlich entspricht die Struktur an der Oberfläche der Probe der Kristallstruktur in ihrem Inneren. Eine Goldoberfläche ist dafür ein gutes Beispiel. In ihr wechseln sich in einem Fischgrät-Muster zwei verschiedene Kristallstrukturen ab. „Das war zwar bereits bekannt und es gab auch überzeugende experimentelle Belege, aber nur indirekte“, sagt Peter Wahl: „Wir haben die beiden Strukturen nun erstmals direkt abgebildet.“

Ein Gefühl für die Chemie der Oberfläche

Noch eine weitere Information hoffen die Forscher Probenoberflächen künftig mit der QPCM entlocken zu können. Die gemessene Leitfähigkeit hängt nämlich auch von der chemischen Natur des kontaktierten Atoms ab. „Ein Experiment mit Eisenatomen auf einer Platinoberfläche hat uns erste Hinweise gegeben, dass wir aus Änderungen der Leitfähigkeit schließen können, welche Atome wir ertasten“, sagt Wahl. Um diesen Effekt praktisch ausnutzen zu können, müssen die Physiker den Zusammenhang zwischen der chemischen Beschaffenheit und der Leitfähigkeit aber zunächst noch besser verstehen.

Leichter würde eine chemische Oberflächenanalyse zudem, wenn die Physiker ihren mikroskopischen Finger auf die einzelnen Atome legen könnten. „Dazu möchten wir die Oberfläche mit Molekülen wie Kohlenmonoxid abtasten“, sagt Peter Wahl. Das Adatom, mit dem er und seine Kollegen derzeit über die oberste Atomlage fahren, hüpft nämlich immer in die Mulden zwischen benachbarten Atomen. So lässt sich zwar die Form des Gitters präzise abbilden, gibt aber nur vage Fingerzeige auf die chemische Natur der Gitteratome.

Lässt sich die QPCM auch dafür sensibilisieren, könnte sie zu einer Alternative für Analysemethoden werden, die wie die energiedispersive Elektronenmikroskopie heute schon die atomare Struktur von Oberflächen abbilden und dabei auch chemische Informationen liefern. Wie gut sich die QPCM dafür eignet, wollen Peter Wahl und seine Kollegen in einem ihrer nächsten Projekte prüfen, indem sie nicht homogene Metalloberflächen abtasten, sondern Materialien mit einer Schichtstruktur unterschiedlicher Elemente.

Forscher erwarten neue Erkenntnisse für die Elektronik der Zukunft

Doch nicht nur die chemischen Eigenschaften einer Probe können die Physiker mit einem Quantenpunkt-Kontakt-Mikroskop in den Blick nehmen, es könnte ihnen auch zu neuen physikalischen Einsichten verhelfen – etwa in den Quantentransport durch ein Atom zwischen RTM-Spitze und Probe. Der wird nicht nur davon beeinflusst, welche Atome das Kontaktatom berührt, sondern zum Beispiel auch dadurch, dass die Strom transportierenden Ladungsträger in den Elektroden gestreut werden. Diese Effekte wollen die Forscher mit Hilfe der Kombination von Raster-Tunnel und Quantenpunkt-Kontakt-Mikroskopie untersuchen.

Erkenntnisse, wie sich die elektronischen Zustände der Probenatome auf den Quantentransport auswirkt, könnten sich wiederum für Elektronik der Zukunft ausnutzen lassen. Ein einzelnes Molekül zwischen der RTM-Spitze und der Probe wird nämlich auch zum Testfall etwa für denkbar kleine Transistoren. Molekulare elektronische Bauteile würden auf Mikrochips eine wesentlich höhere Datendichte ermöglichen. Damit es dazu kommt, müssen Chemiker und Physiker zum einen geeignete Moleküle identifizieren, zum anderen müssen sie die Teilchen in geeigneter Weise kontaktieren. Wie das am besten geht, können Forscher mit der QPCM gut untersuchen.

Ansprechpartner
Dr. Peter Wahl
Max-Planck-Institut für Festkörperforschung, Stuttgart
Telefon: +49 711 689-1653
Fax: +49 711 689-1662
E-Mail: wahl@fkf.mpg.de
Originalveröffentlichung
Yong-Hui Zhang, Peter Wahl und Klaus Kern
Quantum Point Contact Microscopy
Nano Letters, published online 26. Juli 2011; DOI: 10.1021/nl201912u

Dr. Peter Wahl | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4408673/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten